(08年黃岡中學(xué)三模理)一批產(chǎn)品成箱包裝,每箱6件. 一用戶在購(gòu)買(mǎi)這批產(chǎn)品前先取出2箱,再?gòu)娜〕龅拿肯渲谐槿?件檢驗(yàn). 設(shè)取出的第一、二箱中二等品分別裝有1件、n件,其余均為一等品.

(Ⅰ)若n=2,求取到的4件產(chǎn)品中恰好有2件二等品的概率;

(Ⅱ)若取到的4件產(chǎn)品中含二等品的概率大于0.80,用戶拒絕購(gòu)買(mǎi),求該批產(chǎn)品能被用戶買(mǎi)走的n的值.

解析:設(shè)Ai表示事件“第一箱中取出i件二等品”,其中i=0, 1;Bj表示事件“第二箱中取出j件二等品”,其中j=0, 1, 2,

(Ⅰ)依題意,所求概率為

 

(Ⅱ)依題設(shè)可知,即,

,又由題設(shè)可知 且

         故n=0, 1或2. 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模理)設(shè)的極小值為,其導(dǎo)函數(shù)的圖像是經(jīng)過(guò)點(diǎn)開(kāi)口向上的拋物線,如圖所示.

(Ⅰ)求的解析式;

(Ⅱ)若直線與函數(shù)有三個(gè)交點(diǎn),

求實(shí)數(shù)的取值范圍.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模)如圖,在直三棱柱ABCA1B1C1中, .

(Ⅰ)若DAA1中點(diǎn),求證:平面B1CD平面B1C1D;

(Ⅱ)若二面角B1DCC1的大小為60°,求AD的長(zhǎng).

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模理)如圖,設(shè)拋物線的準(zhǔn)線與軸交于,焦點(diǎn)為;以為焦點(diǎn),離心率的橢圓與拋物線軸上方的一個(gè)交點(diǎn)為.

(Ⅰ)當(dāng)時(shí),求橢圓的方程及其右準(zhǔn)線的方程;

(Ⅱ)在(Ⅰ)的條件下,直線經(jīng)過(guò)橢圓的右焦點(diǎn),與拋物線交于,如果

以線段為直徑作圓,試判斷點(diǎn)P與圓的位置關(guān)系,并說(shuō)明理由;

(Ⅲ)是否存在實(shí)數(shù),使得△的邊長(zhǎng)是連續(xù)的自然數(shù),若存在,求出這樣的實(shí)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模)設(shè)數(shù)列{an},{bn}滿足,且.

(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;

(Ⅱ)對(duì)一切,證明成立;

(Ⅲ)記數(shù)列的前n項(xiàng)和分別為,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年黃岡中學(xué)三模文)(本小題滿分13分)設(shè)的極小值為,其導(dǎo)函數(shù)的圖像是經(jīng)過(guò)點(diǎn)開(kāi)口向上的拋物線,如圖所示.

(Ⅰ)求的解析式;

(Ⅱ)若,且過(guò)點(diǎn)(1,m)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案