如圖,正四棱柱ABCD-A1B1C1D1的底面邊長為1,高為2,M為線段AB的中點.
求:(1)三棱錐C1-MBC的體積;
(2)異面直線CD與MC1所成角的大。ńY(jié)果用反三角函數(shù)值表示).

【答案】分析:(1)連接CM,根據(jù)M為AB中點,且正方形ABCD邊長為1,得到△BCM的面積為S=S正方形ABCD=.因為CC1⊥平面ABCD,是三棱錐C1-MBC的高,所以利用錐體體積公式,可得三棱錐C1-MBC的體積;
(2)連接BC1,正方形ABCD中,因為CD∥AB,所以∠C1MB(或其補角)為異面直線CD與MC1所成的角.Rt△MC1B中,可算出BC1=,而MB=AB=,利用直角三角形中三角函數(shù)的定義,得到tan∠C1MB==,所以異面直線CD與MC1所成角為arctan
解答:解:(1)連接CM,
∵正方形ABCD中,M為AB中點,且邊長為1,
∴△BCM的面積為S=S正方形ABCD=
又∵CC1⊥平面ABCD,
∴CC1是三棱錐C1-MBC的高,
∴三棱錐C1-MBC的體積為:VC1-MBC=××2=
(2)連接BC1
∵CD∥AB,
∴∠C1MB(或其補角)為異面直線CD與MC1所成的角.
∵AB⊥平面B1C1CB,BC1?平面B1C1CB,
∴AB⊥BC1
Rt△MC1B中,BC1==,MB=AB=
∴tan∠C1MB==
所以異面直線CD與MC1所成角為arctan
點評:本題給出一個特殊的正三棱柱,求其中的異面直線所成角和三棱錐體積,著重考查了棱錐的體積公式和異面直線及其所成的角等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆安徽省高二上學期期中考試理科數(shù)學 題型:解答題

(本小題滿分12分)如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB的中點.

(1)求證:AC1∥平面CNB1;

(2)求四棱錐C-ANB1A1的體積.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖是正三棱柱ABC-A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1-ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省期中題 題型:解答題

如圖是正三棱柱ABC﹣A1B1C1,AA1=3,AB=2,若N為棱AB中點.
(1)求證:AC1∥平面CNB1;
(2)求四棱錐C1﹣ANB1A1的體積.

查看答案和解析>>

同步練習冊答案