已知集合A={a1,a2,…,a20},其中ak>0(k=1,2,…,20),集合B={(a,b)|a∈A,b∈A,a-b∈A},則集合B中的元素至多有( )
A.210個
B.200個
C.190個
D.180個
【答案】分析:由A中元素構(gòu)成的有序數(shù)對(ai,aj)共有202個,已知0不屬于A,得到(ai,ai)不屬于B,當(ai,aj)∈B時,(aj,ai)不屬于B,得到集合B中元素的個數(shù)最多為兩者之差.
解答:解:由A中元素構(gòu)成的有序數(shù)對(ai,aj)共有202個.
∵0不屬于A,∴(ai,ai)不屬于B(i=1,2,…,20);
又∵當a∈A時,-a不屬于A,當(ai,aj)∈B時,(aj,ai)不屬于B(i,j=1,…,20).
從而,集合B中元素的個數(shù)最多為(202-20)=190
故選C.
點評:本題考查組合知識,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,…,an中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,有|x-y|≥
xy
25

(Ⅰ)求證:
1
a1
-
1
an
n-1
25
;    
(Ⅱ)求證:n≤9;
(Ⅲ)對于n=9,試給出一個滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A=a1,a2,a3,…,an,其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)設(shè)集合P=2,4,6,8,Q=2,4,8,16,分別求l(P)和l(Q);
(Ⅱ)若集合A=2,4,8,…,2n,求證:l(A)=
n(n-1)2

(Ⅲ)l(A)是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an}中的元素都是正整數(shù),且a1<a2<…<an,對任意的x,y∈A,且x≠y,都有|x-y| ≥
xy
36

(1)求證:
1
a1
-
1
an
n-1
36
;(提示:可先求證
1
ai
-
1
ai+1
1
36
(i=1,2,…,n-1),然后再完成所要證的結(jié)論.)
(2)求證:n≤11;
(3)對于n=11,試給出一個滿足條件的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,a3,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(1)設(shè)集合P={2,4,6,8},Q={2,4,8,16},分別求l(P)和l(Q)的值;
(2)若集合A={2,4,8,…,2n},求l(A)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={a1,a2,…,an},其中ai∈R(1≤i≤n,n>2),l(A)表示和ai+aj(1≤i<j≤n)中所有不同值的個數(shù).
(Ⅰ)若集合A={2,4,8,16},則l(A)=
 
;
(Ⅱ)當n=108時,l(A)的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案