(2007•深圳一模)已知
a
b
均為單位向量,它們的夾角為60°,那么|
a
-3
b
|
等于( 。
分析:由題意并且結(jié)合平面數(shù)量積的運(yùn)算公式可得:
a
b
=
1
2
,再根據(jù)|
a
-3
b
|
=
(
a
-3
b
)
2
可得答案.
解答:解:因?yàn)?span id="igoic4g" class="MathJye">
a
b
均為單位向量,它們的夾角為60°,
所以
a
b
=
1
2

又因?yàn)?span id="kuaacge" class="MathJye">|
a
-3
b
|=
(
a
-3
b
)
2
=
a
2
+9
b
2
-6
a
b
,
所以|
a
-3
b
|
=
7

故選A.
點(diǎn)評(píng):解決此類問(wèn)題的關(guān)鍵是熟練掌握平面向量數(shù)量積的運(yùn)算性質(zhì)與公式,以及向量的求模公式|
a
|= 
a
2
,此題屬于基礎(chǔ)題主要細(xì)心的運(yùn)算即可得到全分.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•深圳一模)已知點(diǎn)A(1,0),B(0,1)和互不相同的點(diǎn)P1,P2,P3,…,Pn,…,滿足
OPn
=an
OA
+bn
OB
(n∈N*)
,其中{an}、{bn}分別為等差數(shù)列和等比數(shù)列,O為坐標(biāo)原點(diǎn),若P1是線段AB的中點(diǎn).
(Ⅰ)求a1,b1的值;
(Ⅱ)點(diǎn)P1,P2,P3,…,Pn,…能否共線?證明你的結(jié)論;
(Ⅲ)證明:對(duì)于給定的公差不零的{an},都能找到唯一的一個(gè){bn},使得P1,P2,P3,…,Pn,…,都在一個(gè)指數(shù)函數(shù)的圖象上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•深圳一模)如圖,AB是半圓O的直徑,C在半圓上,CD⊥AB于D,且AD=3DB,設(shè)∠COD=θ,則tan2
θ
2
=
1
3
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•深圳一模)已知函數(shù)f(x)=x-a
x
+lnx
(a為常數(shù)).
(Ⅰ)當(dāng)a=5時(shí),求f(x)的極值;
(Ⅱ)若f(x)在定義域上是增函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•深圳一模)將圓x2+y2=8上的點(diǎn)的橫坐標(biāo)保持不變,縱坐標(biāo)變?yōu)樵瓉?lái)的
2
2
倍,得到曲線C.設(shè)直線l與曲線C相交于A、B兩點(diǎn),且M,其中M是曲線C與y軸正半軸的交點(diǎn).
(Ⅰ)求曲線C的方程;
(Ⅱ)證明:直線l的縱截距為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案