已知,,圓,一動(dòng)圓在軸右側(cè)與軸相切,同時(shí)與圓相外切,此動(dòng)圓的圓心軌跡為曲線C,曲線E是以,為焦點(diǎn)的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點(diǎn)P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點(diǎn),若AB的中點(diǎn)M在曲線C上,求直線的斜率的取值范圍。
(1);(2)
【解析】
試題分析:(1)設(shè)動(dòng)圓圓心的坐標(biāo)為(x,y)(x>0),由動(dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓F2相外切,知|CF2|-x=1,由此能求出曲線C的方程.
(2)依題意,c=1,|PF1|=,得xp=,由此能求出曲線E的標(biāo)準(zhǔn)方程.
(3)設(shè)直線l與橢圓E交點(diǎn)A(x1,y1),B(x2,y2),A,B的中點(diǎn)M的坐標(biāo)為(x0,y0),將A,B的坐標(biāo)代入橢圓方程中,得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,由此能夠求出直線l的斜率k的取值范圍
解:(1)設(shè)動(dòng)圓圓心的坐標(biāo)為(x,y)(x>0)
因?yàn)閯?dòng)圓在y軸右側(cè)與y軸相切,同時(shí)與圓F2相外切,
所以|CF2|-x=1,…(1分)
∴(x-1)2+y2=x+1化簡整理得y2=4x,曲線C的方程為y2=4x(x>0); …(3分)(2)依題意,c=1,|PF1|=,得xp=,…(4分)∴|PF2|=,又由橢圓定義得2a=|PF1|+|PF2|=4,a=2.…(5分)∴b2=a2-c2=3,所以曲線E的標(biāo)準(zhǔn)方程為
=1.…(6分)(3)設(shè)直線l與橢圓E交點(diǎn)A(x1,y1),B(x2,y2),A,B的中點(diǎn)M的坐標(biāo)為(x0,y0),將A,B的坐標(biāo)代入橢圓方程中,得3x12+4y12-12=0,3x22+4y22-12=0兩式相減得3(x1-x2)(x1+x2)+4(y1-y2)(y1+y2)=0,∴=-,…(7分)∵y02=4x0,∴直線AB的斜率k==-y0,…(8分)由(2)知xp=,∴yp2=4xp=,∴yp=±由題設(shè)-<y0< (y0≠0),∴-<-y0<,…(10分)即-<k<(k≠0).…(12分)
考點(diǎn):曲線方程
點(diǎn)評:本題考查曲線方程的求法,考查直線的斜率的取值范圍的求法,解題時(shí)要認(rèn)真審題,注意點(diǎn)差法和等價(jià)轉(zhuǎn)化思想的合理運(yùn)用.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省高三12月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)是線段的垂直平分線與直線的交點(diǎn).
(1)求點(diǎn)的軌跡曲線的方程;
(2)設(shè)點(diǎn)是曲線上任意一點(diǎn),寫出曲線在點(diǎn)處的切線的方程;(不要求證明)
(3)直線過切點(diǎn)與直線垂直,點(diǎn)關(guān)于直線的對稱點(diǎn)為,證明:直線恒過一定點(diǎn),并求定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市高三上學(xué)期第四次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
( 本小題滿分12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)在上,點(diǎn)在上,且滿足的軌跡為曲線。
求曲線的方程;
若過定點(diǎn)F(0,2)的直線交曲線于不同的兩點(diǎn)(點(diǎn)在點(diǎn)之間),且滿足,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年云南省高三第二次月考理科數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)如圖所示,已知圓為圓上一動(dòng)點(diǎn),點(diǎn)P在AM上,點(diǎn)N在CM上,且滿足,點(diǎn)N的軌跡為曲線E。
(Ⅰ)求曲線E的方程;
(Ⅱ)若過定點(diǎn)F(0,2)的直線交曲線E于不同的兩點(diǎn)G、H(點(diǎn)G在點(diǎn)F、H之間),且滿足的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com