如圖,底面是邊長(zhǎng)為2的菱形,且,以與為底面分別作相同的正三棱錐與,且.
(1)求證:平面;
(2)求平面與平面所成銳角二面角的余弦值.
(1)證明過程見解析;(2).
解析試題分析:(1)作面于,作面于 ,易得四邊形是平行四邊形,所以.又面,面,所以平面;
(2)以為軸的正方向,以為軸的正方向,在平面中過點(diǎn)作面的垂線為軸,建立空間直角坐標(biāo)系求題,利用向量,求出平面和平面的法向量,則兩平面的法向量的夾角即為所求角或?yàn)樗蠼堑难a(bǔ)角.
(1)作面于,作面于 ,因與都是正三棱錐, 且、分別為與的中心,
且 .
所以四邊形是平行四邊形,所以.
又面,面,所以平面
(2)如圖,建立空間直角坐標(biāo)系,、、、、.
、、
、.…7分
設(shè)為平面的法向量,
設(shè)為平面的法向量,
&nbs
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四邊形是正方形,平面,,,,,分別為,,的中點(diǎn).
(1)求證:平面;
(2)求平面與平面所成銳二面角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知棱長(zhǎng)為1的正方體AC1,E、F分別是B1C1、C1D的中點(diǎn).
(1)求點(diǎn)A1到平面的BDEF的距離;
(2)求直線A1D與平面BDEF所成的角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2013•湖北)如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線PC⊥平面ABC,E,F(xiàn)分別是PA,PC的中點(diǎn).
(1)記平面BEF與平面ABC的交線為l,試判斷直線l與平面PAC的位置關(guān)系,并加以證明;
(2)設(shè)(1)中的直線l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿足.記直線PQ與平面ABC所成的角為θ,異面直線PQ與EF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,邊長(zhǎng)為1的正三角形所在平面與直角梯形所在平面垂直,且,,,,、分別是線段、的中點(diǎn).
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
四棱錐S-ABCD中,底面ABCD為平行四邊形,側(cè)面SBC底面ABCD.已知ABC=45o,AB=2,BC=2,SA=SB=.
(1)證明:SABC;
(2)求直線SD與平面SAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示的多面體中, 是菱形,是矩形,平面,,.
(1) 求證:平面平面;
(2) 若二面角為直二面角,求直線與平面所成的角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com