下列命題:
①若f(x)存在導(dǎo)函數(shù),則f′(2x)=[f(2x)]′;
②若函數(shù)h(x)=cos4x-sin4x,則h′(
π
12
)=0

③若函數(shù)g(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),則g′(2013)=2012!;
④函數(shù)f(x)=
sinx
2+cosx
的單調(diào)遞增區(qū)間是(2kπ-
3
,2kπ+
3
)(k∈z)

其中真命題為______.(填序號)
①[f(2x)]′=f′(2x)(2x)′=2f′(2x),所以①錯(cuò)誤.
②因?yàn)閔(x)=cos4x-sin4x=(cos2x+sin2x)(cos2x-sin2x)=cos2x,
所以h'(x)=-2sin2x,即h′(
π
12
)=-2sin(2×
π
12
)=-2sin
π
6
=-2×
1
2
=-1
,所以②錯(cuò)誤.
③因?yàn)間(x)=(x-1)(x-2)(x-3)…(x-2012)(x-2013),
所以g'(x)=[(x-1)(x-2)…(x-2012)]+(x-2013)?[(x-1)(x-2)…(x-2012)]'
所以g'(2013)=…=1×2×…×2012=2012!,所以③正確.
④函數(shù)的導(dǎo)數(shù)為f′(x)=
cosx(2+cosx)-sinx(-sinx)
(2+cosx)2
=
1+2cosx
(2+cosx)2

f′(x)=
1+2cosx
(2+cosx)2
>0
得1+2cosx>0,即cosx>-
1
2
,所以2kπ-
3
<x<2kπ+
3
,k∈Z

即函數(shù)的單調(diào)遞增區(qū)間為[2kπ-
3
,2kπ+
3
],k∈Z
,所以④正確.
故答案為:③④.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
π
2
),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對x∈R恒成立;
④對于任意實(shí)數(shù)a,要使函數(shù)y=5cos(
2k+1
3
πx-
π
6
)(k∈N*)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號是
②④
②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)镽,則下列命題中:?
①若f(x-2)是偶函數(shù),則函數(shù)f(x)的圖象關(guān)于直線x=2對稱;?②若f(x+2)=-f(x-2),則函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱;?③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱;?④函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱.?
其中正確的命題序號是
.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知函數(shù)f(x)的定義域?yàn)镽,則下列命題中:?
①若f(x-2)是偶函數(shù),則函數(shù)f(x)的圖象關(guān)于直線x=2對稱;?②若f(x+2)=-f(x-2),則函數(shù)f(x)的圖象關(guān)于原點(diǎn)對稱;?③函數(shù)y=f(2+x)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱;?④函數(shù)y=f(x-2)與函數(shù)y=f(2-x)的圖象關(guān)于直線x=2對稱.?
其中正確的命題序號是________.?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(
π
4
,
π
2
),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ,則α+β<
π
2
;
③若f(x)=2cos2
x
2
-1,則f(x+π)=f(x)對x∈R恒成立;
④對于任意實(shí)數(shù)a,要使函數(shù)y=5cos(
2k+1
3
πx-
π
6
)(k∈N*)在區(qū)間[a,a+3]上的值
5
4
出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省黃石市大冶市華中學(xué)校高三數(shù)學(xué)滾動(dòng)訓(xùn)練(三)(解析版) 題型:填空題

在下列命題中:
①若f(x)是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),θ∈(),則f(sinθ)>f(cosθ);
②若銳角α、β滿足cosα>sinβ,則α+β<;
③若f(x)=2cos2-1,則f(x+π)=f(x)對x∈R恒成立;
④對于任意實(shí)數(shù)a,要使函數(shù)y=5cos(πx-)(k∈N*)在區(qū)間[a,a+3]上的值出現(xiàn)的次數(shù)不小于4次,又不多于8次,則k可以取2和3.       
其中真命題的序號是   

查看答案和解析>>

同步練習(xí)冊答案