如圖,三棱柱ABC-A1B1C1的側(cè)棱長和底面邊長均為2,且側(cè)棱AA1底面ABC,其正(主)視圖是邊長為2的正方形,則此三棱柱側(cè)(左)視圖的面積為(    )

A.            B.4                C.             D.

 

【答案】

D

【解析】

試題分析:因?yàn)�,三棱柱ABC-A1B1C1的側(cè)棱長和底面邊長均為2,且側(cè)棱AA1底面ABC,其正(主)視圖是邊長為2的正方形,所以,該三棱柱為正三棱柱,其柱側(cè)(左)視圖為矩形,一條邊長為2,另一條邊長為正三角形的高,故此三棱柱側(cè)(左)視圖的面積為,選D。

考點(diǎn):本題主要考查三視圖,直三棱柱的幾何特征,面積計(jì)算。

點(diǎn)評:基礎(chǔ)題,三視圖是高考必考題目,因此,要明確三視圖視圖規(guī)則。三視圖視圖過程中,要注意虛線的出現(xiàn),意味著有被遮掩的棱。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1中,∠ACB=90°,CC1⊥平面ABC,AC=BC=CC1=1,則直線A1C1和平面ACB1的距離等于
 
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),AB=AC.
(1)證明:DE⊥平面BCC1
(2)設(shè)B1C與平面BCD所成的角的大小為30°,求二面角A-BD-C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•黑龍江)如圖,三棱柱ABC-A1B1C1中,側(cè)棱垂直底面,∠ACB=90°,AC=BC=
12
AA1,D是棱AA1的中點(diǎn).
(Ⅰ)證明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱為兩部分,求這兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,三棱柱ABC-A1B1C1的底面ABC為正三角形,側(cè)棱AA1⊥平面ABC,D是BC中點(diǎn),且AA1=AB
(1)證明:AD⊥BC1
(2)證明:A1C∥平面AB1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•大連二模)如圖,三棱柱ABC-A′B′C′,cc′=
2
,BC′=
2
,BC=2,△ABC是以BC為底邊的等腰三角形,平面ABC⊥平面BCC′B′,E、F分別為棱AB、CC′的中點(diǎn).
(I)求證:EF∥平面A′BC′;
(Ⅱ)若AC≤
2
,且EF與平面ACC'A'所成的角的余弦為
7
3
,求二面角C-AA'-B的大小.

查看答案和解析>>

同步練習(xí)冊答案