4.已知三棱柱ADE-BCF如圖所示,其中M,N分別是AF,BC的中點(diǎn),且平面ABCD⊥底面ABEF,AB=AD=AE=BF=BC=2.
(1)求證:MN∥平面CDEF;
(2)求多面體A-CDEF的體積.

分析 (1)根據(jù)線面平行的判定定理進(jìn)行證明即可.
(2)根據(jù)錐體的體積公式先求出錐體的底面積和高即可.

解答 (1)證明:由AB=BC=BF=2,DE=CF=2$\sqrt{2}$,∠CBF=$\frac{π}{2}$.
取BF的中點(diǎn)G,連接MG,NG,
由M,N分別為AF,BC的中點(diǎn)可得,
NG∥CF,MG∥EF,且NG∩MG=G,CF∩EF=F,
∴平面MNG∥平面CDEF,
又MN?平面MNG,
∴MN∥平面CDEF.-------------------------(6分)

(2)取DE的中點(diǎn)H.∵AD=AE,∴AH⊥DE,
在直三棱柱ADE-BCF中,平面ADE⊥平面CDEF,平面ADE∩平面CDEF=DE.
∴AH⊥平面CDEF.
∴多面體A-CDEF是以AH為高,以矩形CDEF為底面的棱錐,在△ADE中,AH=$\sqrt{2}$.
S矩形CDEF=DE•EF=4$\sqrt{2}$,
∴棱錐A-CDEF的體積為V=$\frac{1}{3}$•S矩形CDEF•AH=$\frac{1}{3}$×4$\sqrt{2}$×$\sqrt{2}$=$\frac{8}{3}$.----(12分)

點(diǎn)評(píng) 本題主要考查空間直線和平面平行的判定以及空間錐體的體積的計(jì)算,根據(jù)相應(yīng)的判定定理和體積公式是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.垂直于x軸的直線l與橢圓C:$\frac{x^2}{4}+{y^2}=1$相交于M、N兩點(diǎn),A是C的左頂點(diǎn).
(1)求$\overrightarrow{AM}•\overrightarrow{AN}$的最小值;
(2)設(shè)點(diǎn)P是C上異于M、N的任意一點(diǎn),且直線MP、NP分別與x軸交于R、S兩點(diǎn),O是坐標(biāo)原點(diǎn),求△OPR和△OPS的面積之積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.△ABC中,若a2+c2-b2=ac,那么角B=60°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.α,β是兩個(gè)平面,m,n是兩條直線,有下列四個(gè)命題:
①如果m⊥n,m⊥α,n∥β,那么α⊥β;
②如果m⊥α,n∥α,那么m⊥n;
③如果α∥β,m?α,那么m∥β;
④如果m∥n,m?α,n?β,則α∥β.
其中正確的命題有②③.(填寫(xiě)所有正確命題的編號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.計(jì)算sin137°cos13°-cos43°sin13°的結(jié)果為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知x,y,z都是大于1的正數(shù),m>0,且logxm=24,logym=40,logxyzm=12,則logzm的值為60.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知某路段最高限速60km/h,電子監(jiān)控測(cè)得連續(xù)6輛汽車(chē)的速度用莖葉圖表示如下(單位:km/h).若從中任取2輛,則恰好有1輛汽車(chē)超速的概率為(  )
A.$\frac{4}{15}$B.$\frac{2}{5}$C.$\frac{8}{15}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知圓C:(x-3)2+(y-4)2=4
(1)若平面上有兩點(diǎn)A(1,0),B(-1,0),點(diǎn)P是圓C上的動(dòng)點(diǎn),求使|AP|2+|BP|2取得最小值時(shí)點(diǎn)P的坐標(biāo);
(2)若Q是x軸上的動(dòng)點(diǎn),QM,QN分別切圓C于M,N兩點(diǎn),①若$|{MN}|=2\sqrt{3}$,求直線QC的方程;②求證:直線MN恒過(guò)定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.設(shè)函數(shù)f(x)=x3+ax2+bx+c的圖象如圖所示,且與y=0在原點(diǎn)相切,若函數(shù)的極小值為-4.
(1)求a,b,c的值;
(2)求函數(shù)的遞減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案