三人獨立破譯同一份密碼.已知三人各自破譯出密碼的概率分別為且他們是否破譯出密碼互不影響.

(Ⅰ)求恰有二人破譯出密碼的概率;

(Ⅱ)“密碼被破譯”與“密碼未被破譯”的概率哪個大?說明理由.

答案:
解析:

  (Ⅰ)答:恰好二人破譯出密碼的概率為

  (Ⅱ)答:密碼被破譯的概率比密碼未被破譯的概率大.

  解:記“第i個人破譯出密碼”為事件A1(i=1,2,3),依題意有

  A1,A2,A3相互獨立.

  (Ⅰ)設(shè)“恰好二人破譯出密碼”為事件B,則有

  BA1·A2··A1··A3·A2·A3A1·A2·,A1··A3,·A2·A3

  彼此互斥

  于是P(B)=P(A1·A2·)+P(A1··A3)+P(·A2·A3)

 。

  =

  (Ⅱ)設(shè)“密碼被破譯”為事件C,“密碼未被破譯”為事件D

  D··,且,互相獨立,則有

  P(D)=P(P(P()=

  而P(C)=1-P(D)=,故P(C)>P(D).

  本小題主要考查概率的基本知識與分類思想,考查運用數(shù)學(xué)知識分析問題、解決問題的能力.滿分12分.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

三人獨立破譯同一份密碼.已知三人各自破譯出密碼的概率分別為
1
5
,
1
4
1
3
,且他們是否破譯出密碼互不影響.
(Ⅰ)求恰有二人破譯出密碼的概率;
(Ⅱ)“密碼被破譯”與“密碼未被破譯”的概率哪個大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
1
2
1
3
,p
.且他們是否破譯出密碼互不影響.若三人中只有甲破譯出密碼的概率為
1
4

(Ⅰ)求甲乙二人中至少有一人破譯出密碼的概率;
(Ⅱ)求p的值;
(Ⅲ)設(shè)甲、乙、丙三人中破譯出密碼的人數(shù)為X,求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
1
3
,
1
4
,p
,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
1
6

(1)求p的值,
(2)設(shè)在甲、乙、丙三人中破譯出密碼的總?cè)藬?shù)為X,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為
1
2
、
1
3
、p,且他們是否破譯出密碼互不影響,若三人中只有甲破譯出密碼的概率為
1
4

(1)求p的值.
(2)設(shè)甲、乙、丙三人中破譯出密碼的人數(shù)為X,求X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市西城區(qū)高三一模試卷數(shù)學(xué)(理科) 題型:解答題

甲、乙、丙三人獨立破譯同一份密碼,已知甲、乙、丙各自破譯出密碼的概率分別為.且他們是否破譯出密碼互不影響.若三人中只有甲破譯出密碼的概率為.

(Ⅰ)求甲乙二人中至少有一人破譯出密碼的概率;

(Ⅱ)求的值;

(Ⅲ)設(shè)甲、乙、丙三人中破譯出密碼的人數(shù)為,求的分布列和數(shù)學(xué)期望.

 

查看答案和解析>>

同步練習(xí)冊答案