【題目】下列各組函數(shù)中,f(x)與g(x)表示同一個函數(shù)的是(
A.
B.
C.f(x)=x,g(x)=(x﹣1)0
D.

【答案】B
【解析】解:對于A,f(x)=x(x∈R),與g(x)= =|x|(x∈R)的對應關系不同,所以不是同一函數(shù);對于B,f(x)=x(x∈R),與g(x)= =x(x∈R)的定義域相同,對應關系也相同,所以是同一函數(shù).
對應C,f(x)=x(x∈R),與g(x)=(x﹣1)0=1(x≠1)的定義域不同,對應關系也不同,
所以不是同一函數(shù);
對于D,f(x)= =x﹣3(x≠﹣3),與g(x)=x﹣3(x∈R)的定義域不同,所以不是同一函數(shù).
故選:B.
【考點精析】解答此題的關鍵在于理解判斷兩個函數(shù)是否為同一函數(shù)的相關知識,掌握只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且an是Sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn , bn+1)在直線x﹣y+2=0上.
(1)求a1和a2的值;
(2)求數(shù)列{an},{bn}的通項an和bn;
(3)設cn=anbn , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出定義:若m﹣ <x≤m+ (其中m為整數(shù)),則m叫做離實數(shù)x最近的整數(shù),記作{x},即{x}=m,設函數(shù)f(x)=x﹣{x},二次函數(shù)g(x)=ax2+bx,若函數(shù)y=f(x)與y=g(x)的圖象有且只有一個公共點,則a,b的取值不可能是(
A.a=﹣4,b=1
B.a=﹣2,b=﹣1
C.a=4,b=﹣1
D.a=5,b=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體ABCD﹣A1B1C1D1中,M為DD1的中點,O為底面ABCD的中心,P為棱A1B1上任意一點,則直線OP與直線AM所成的角是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,側面PAD⊥底面ABCD,側棱PA=PD= ,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2,O為AD中點.

(1)求證:PO⊥平面ABCD;
(2)求異面直線PB與CD所成角的余弦值;
(3)線段AD上是否存在點Q,使得它到平面PCD的距離為 ?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】制定投資計劃時,不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損.某投資人打算投資甲、乙兩個項目.根據(jù)預測,甲、乙項目可能的最大盈利率分別為100%50%,可能的最大虧損分別為30%10%.投資人計劃投資金額不超過10萬元,要求確?赡艿馁Y金虧損不超過1.8萬元.問投資人對甲、乙兩個項目各投資多少萬元,才能使可能的盈利最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且 bcosA=asinB.
(1)求角A的大小;
(2)若a=6,△ABC的面積是9 ,求三角形邊b,c的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設等比數(shù)列{an}的前項n和Sn , a2= ,且S1+ ,S2 , S3成等差數(shù)列,數(shù)列{bn}滿足bn=2n.
(1)求數(shù)列{an}的通項公式;
(2)設cn=anbn , 若對任意n∈N+ , 不等式c1+c2+…+cn λ+2Sn﹣1恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣2ax+a+2=0,當a為何值時,該方程:
(1)有兩個不同的正根;
(2)有不同的兩根且兩根在(1,3)內.

查看答案和解析>>

同步練習冊答案