已知橢圓的一個(gè)頂點(diǎn)為,焦點(diǎn)在軸上,若右焦點(diǎn)到直線的距離為3.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線與橢圓相交于不同的兩點(diǎn)、,當(dāng)時(shí),求的取值范圍.

(1);(2).

解析試題分析:本題考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、交點(diǎn)問題、直線的斜率、韋達(dá)定理等基礎(chǔ)知識(shí),考查數(shù)形結(jié)合思想,考查運(yùn)算求解能力、綜合分析和解決問題的能力.第一問,根據(jù)條件,設(shè)橢圓的方程,寫出,得焦點(diǎn),代入點(diǎn)到直線的距離公式,得,得到橢圓的方程;第二問,直線方程與曲線方程聯(lián)立,消,得關(guān)于的一元二次方程,據(jù)條件有兩個(gè)不同實(shí)根,所以,解得,利用韋達(dá)定理,求得中點(diǎn)的橫縱坐標(biāo),求,由,得,整理得,最后解方程組得.
試題解析:(1)依題意可設(shè)橢圓方程為,          .2分
則右焦點(diǎn)的坐標(biāo)為,                .3分
由題意得,解得,
故所求橢圓的標(biāo)準(zhǔn)方程為.                .5分
(2)設(shè)、、,其中為弦的中點(diǎn),
,得        .7分
因?yàn)橹本與橢圓相交于不同的兩點(diǎn),所以
   ①,                                .8分
,所以
從而 ,                            .9分
所以,                       .10分
,所以,
因而,即  ②,          .11分
把②式代入①式得,解得,           .12分
由②式得,解得,                .13分
綜上所述,求得的取值范圍為.             .14分
考點(diǎn):1.點(diǎn)到直線的距離公式;2.橢圓的標(biāo)準(zhǔn)方程;3.橢圓的性質(zhì);4.韋達(dá)定理;5.線線垂直的充要條件.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線,求曲線過點(diǎn)的切線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在原點(diǎn)的雙曲線的一個(gè)焦點(diǎn)是,一條漸近線的方程是。
(1)求雙曲線的方程;
(2)若以為斜率的直線與雙曲線相交于兩個(gè)不同的點(diǎn),且線段的垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的左右焦點(diǎn)分別是,離心率,為橢圓上任一點(diǎn),且的最大面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)斜率為的直線交橢圓兩點(diǎn),且以為直徑的圓恒過原點(diǎn),若實(shí)數(shù)滿足條件,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率為,直線與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.

(1)求橢圓的方程;
(2)如圖,、是橢圓的頂點(diǎn),是橢圓上除頂點(diǎn)外的任意點(diǎn),直線軸于點(diǎn),直線于點(diǎn),設(shè)的斜率為,的斜率為,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓過點(diǎn),離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)且斜率為)的直線與橢圓相交于兩點(diǎn),直線分別交直線 于、兩點(diǎn),線段的中點(diǎn)為.記直線的斜率為,求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)拋物線的焦點(diǎn)為,其準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)的直線交拋物線于兩點(diǎn).
(1)若直線的斜率為,求證:;
(2)設(shè)直線的斜率分別為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線的焦點(diǎn)為F過點(diǎn)的直線交拋物線于A,B兩點(diǎn),直線AF,BF分別與拋物線交于點(diǎn)M,N

(1)求的值;
(2)記直線MN的斜率為,直線AB的斜率為 證明:為定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,橢圓經(jīng)過點(diǎn)離心率,直線的方程為.

(Ⅰ)求橢圓的方程;
(Ⅱ)是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記的斜率分別為問:是否存在常數(shù),使得若存在求的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案