【題目】若分別為P(1,0)、Q(2,0),R(4,0)、S(8,0)四個(gè)點(diǎn)各作一條直線,所得四條直線恰圍成正方形,則該正方形的面積不可能為( )
A.
B.
C.
D.
【答案】C
【解析】解:如果過點(diǎn)P(1,0),Q(2,0),R(4,0),S(8,0)作四條直線構(gòu)成一個(gè)正方形, 過P點(diǎn)的必須和過Q,R,S的其中一條直線平行和另外兩條垂直,
假設(shè)過P點(diǎn)和Q點(diǎn)的直線相互平行時(shí),如圖,
設(shè)直線PC與x軸正方向的夾角為θ,再過Q作它的平行線QD,過R、S作它們的垂線RB、SC,過點(diǎn)A作x軸的平行線分別角PC、SC于點(diǎn)M、N,
則AB=AMsinθ=PQsinθ=sinθ,AD=ANcosθ=RScosθ=4cosθ,
因?yàn)锳B=AD,所以sinθ=4cosθ,則tanθ=4,
所以正方形ABCD的面積S=ABAD=4sinθcosθ= = = ,
同理可求,當(dāng)直線PC和過R的直線平行時(shí)正方形ABCD的面積S為 ,
當(dāng)直線PC和過S點(diǎn)的直線平行時(shí)正方形ABCD的面積S為 ,
故選:C.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩點(diǎn)式方程的相關(guān)知識(shí),掌握直線的兩點(diǎn)式方程:已知兩點(diǎn)其中則:y-y1/y-y2=x-x1/x-x2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的半焦距為 ,原點(diǎn) 到經(jīng)過兩點(diǎn) 的直線的距離為 .
(Ⅰ)求橢圓 的離心率;
(Ⅱ)如圖, 是圓 的一條直徑,若橢圓 經(jīng)過 兩點(diǎn),求橢圓 的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在實(shí)數(shù)集R上的奇函數(shù)f(x)有最小正周期2,且當(dāng)x∈(0,1)時(shí), .
(Ⅰ)求函數(shù)f(x)在(-1,1)上的解析式;
(Ⅱ)判斷f(x)在(0,1)上的單調(diào)性;
(Ⅲ)當(dāng)λ取何值時(shí),方程f(x)=λ在(-1,1)上有實(shí)數(shù)解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四面體P﹣ABC中,點(diǎn)M是棱PC的中點(diǎn),點(diǎn)N是線段AB上一動(dòng)點(diǎn),且 ,設(shè)異面直線 NM 與 AC 所成角為α,當(dāng) 時(shí),則cosα的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=ln(x2﹣x)的定義域?yàn)椋?)
A.(0,1)
B.[0,1]
C.(﹣∞,0)∪(1,+∞)
D.(﹣∞,0]∪[1,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)點(diǎn)P在△ABC的BC邊所在的直線上從左到右運(yùn)動(dòng),設(shè)△ABP與△ACP的外接圓面積之比為λ,當(dāng)點(diǎn)P不與B,C重合時(shí),( )
A.λ先變小再變大
B.當(dāng)M為線段BC中點(diǎn)時(shí),λ最大
C.λ先變大再變小
D.λ是一個(gè)定值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知單位圓x2+y2=1與x軸正半軸交于點(diǎn)P,當(dāng)圓上一動(dòng)點(diǎn)Q從P出發(fā)沿逆時(shí)針方向旋轉(zhuǎn)一周回到P點(diǎn)后停止運(yùn)動(dòng)設(shè)OQ掃過的扇形對(duì)應(yīng)的圓心角為xrad,當(dāng)0<x<2π時(shí),設(shè)圓心O到直線PQ的距離為y,y與x的函數(shù)關(guān)系式y(tǒng)=f(x)是如圖所示的程序框圖中的①②兩個(gè)關(guān)系式
(Ⅰ)寫出程序框圖中①②處的函數(shù)關(guān)系式;
(Ⅱ)若輸出的y值為2,求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值為0,求實(shí)數(shù)a的值;
(2)證明:當(dāng)a=2時(shí),不等式f(x)≥ ﹣e1﹣x恒成立.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com