【題目】下列結論中
①若空間向量,,則是的充要條件;
②若是的必要不充分條件,則實數的取值范圍為;
③已知,為兩個不同平面,,為兩條直線,,,,,則“”是“”的充要條件;
④已知向量為平面的法向量,為直線的方向向量,則是的充要條件.
其中正確命題的序號有( )
A.②③B.②④C.②③④D.①②③④
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,橢圓的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求橢圓的極坐標方程和直線的直角坐標方程;
(2)若點的極坐標為,直線與橢圓相交于,兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,為的中點,為等邊三角形,是棱上的一點,設(與不重合).
(1)當時,求三棱錐的體積;
(2)若平面,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓,為坐標原點,為橢圓上任意一點,,分別為橢圓的左、右焦點,且,,依次成等比數列,其離心率為.過點的動直線與橢圓相交于、兩點.
(1)求橢圓的標準方程;
(2)當時,求直線的方程;
(3)在平面直角坐標系中,若存在與點不同的點,使得成立,求點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】根據統計調查數據顯示:某企業(yè)某種產品的質量指標值服從正態(tài)分布,從該企業(yè)生產的這種產品(數量很大)中抽取100件,測量這100件產品的質量指標值,由測量結果得到如圖所示的頻率分布直方圖,質量指標值落在區(qū)間,,內的頻率之比為.
(1)求這100件產品質量指標值落在區(qū)間內的頻率;
(2)根據頻率分布直方圖求平均數(同一組中的數據用該組區(qū)間的中點值作代表);
(3)若取這100件產品指標的平均值,從這種產品(數量很大)中任取3個,求至少有1個落在區(qū)間的概率.
參考數據:,若,則;;.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一大批產品,其驗收方案如下,先做第一次檢驗:從中任取8件,經檢驗都為優(yōu)質品時接受這批產品,若優(yōu)質品數小于6件則拒收;否則做第二次檢驗,其做法是從產品中再另任取3件,逐一檢驗,若檢測過程中檢測出非優(yōu)質品就要終止檢驗且拒收這批產品,否則繼續(xù)產品檢測,且僅當這3件產品都為優(yōu)質品時接受這批產品.若產品的優(yōu)質品率為0.9.且各件產品是否為優(yōu)質品相互獨立.
(1)記為第一次檢驗的8件產品中優(yōu)質品的件數,求的期望與方差;
(2)求這批產品被接受的概率;
(3)若第一次檢測費用固定為1000元,第二次檢測費用為每件產品100元,記為整個產品檢驗過程中的總費用,求的分布列.
(附:,,,,)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設.
(1)若,且為函數的一個極值點,求函數的單調遞增區(qū)間;
(2)若,且函數的圖象恒在軸下方,其中是自然對數的底數,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD是邊長為a的正方形,側面底面ABCD,且,若E,F分別為PC,BD的中點.
(I)求證:EF//平面PAD;
(II)求三棱錐F-DEC的體積;
(III)在線段CD上是否存在一點G,使得平面平面PDC?若存在,請說明其位置,并加以證明;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com