小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關于售價x(元)(x∈Z+)的函數(shù)關系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關),試問小張應該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤-總管理、倉儲等費用)?

解:設t=kx+b,∴,解得k=-2,b=70,∴t=70-2x.…1分
(1)y=(x-10)•t=(x-10)•(70-2x)=-2x2+90x-700,…1分
,∴圍巾定價為22元或23元時,每日的利潤最高.…2分
(2)設售價x(元)時總利潤為z(元),
∴z=2000•(x-10)-200•…1分
=2000•(25-((35-x)+))≤2000•(25-)=10000元.…1分
當35-x=時,即x=25時,取得等號.…1分
∴小張的這批圍巾定價為25元時,這批圍巾的總利潤最高.…1分.
分析:(1)根據(jù)題意先求出銷售量t與售價x之間的關系式,再利用毛利潤為每日賣出商品的進貨價與銷售價之間的差價,確定毛利潤y(元)關于售價x(元)(x∈Z+)的函數(shù)關系式,利用二次函數(shù)求最值的方法可求;
(2)根據(jù)總利潤=總毛利潤-總管理、倉儲等費用,構建函數(shù)關系,利用基本不等式可求最值.
點評:本題以實際問題為載體,考查二次函數(shù)模型的構建,考查配方法求最值及基本不等式求最值,關鍵是函數(shù)式的構建.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關于售價x(元)(x∈Z+)的函數(shù)關系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關),試問小張應該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤-總管理、倉儲等費用)?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

小張在淘寶網(wǎng)上開一家商店,他以10元每條的價格購進某品牌積壓圍巾2000條.定價前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):A商店以30元每條的價格銷售,平均每日銷售量為10條;B商店以25元每條的價格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量t(條)是售價x(元)(x∈Z+)的一次函數(shù),且各個商店間的售價、銷售量等方面不會互相影響.
(1)試寫出圍巾銷售每日的毛利潤y(元)關于售價x(元)(x∈Z+)的函數(shù)關系式(不必寫出定義域),并幫助小張定價,使得每日的毛利潤最高(每日的毛利潤為每日賣出商品的進貨價與銷售價之間的差價);
(2)考慮到這批圍巾的管理、倉儲等費用為200元/天(只要圍巾沒有售完,均須支付200元/天,管理、倉儲等費用與圍巾數(shù)量無關),試問小張應該如何定價,使這批圍巾的總利潤最高(總利潤=總毛利潤-總管理、倉儲等費用)?

查看答案和解析>>

同步練習冊答案