A. | ①② | B. | ②③ | C. | ①③④ | D. | ②④ |
分析 △ABC中,當(dāng)A為銳角時,a<bsin A,無解.當(dāng)A為鈍角或直角時,a≤b,無解,當(dāng)bsinA<a<b時,三角形有兩個解,利用正弦定理,正弦函數(shù)的圖象和性質(zhì)逐一判斷即可得解.
解答 解:①b=12,c=9,C=60°;
由正弦定理可得:sinB=$\frac{12×\frac{\sqrt{3}}{2}}{9}=\frac{2\sqrt{3}}{3}$>1,三角形無解,不符合條件;
②b=3,c=4,B=30°;
有:csinB=4×$\frac{1}{2}$=2<b<c,三角形有兩解,符合條件;
③b=3$\sqrt{3}$,c=6,B=60°;
由正弦定理可得:sinC=$\frac{6×\frac{\sqrt{3}}{2}}{3\sqrt{3}}$=1,C為直角,由c<b,可得三角形無解,不符合條件;
④a=5,b=8,A=30°.
可得:bsinA=4<a<b,三角形有兩解,符合條件;
故選:D.
點評 本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想和數(shù)形結(jié)合思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{2}$ | B. | -1 | C. | 2 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<1 | B. | a≤1 | C. | a<2 | D. | a≤2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 3$\sqrt{3}$ | C. | 4$\sqrt{3}$ | D. | 5$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4 | B. | $4\sqrt{3}$ | C. | 8 | D. | $8\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com