已知函數(shù)f(x)=x|xa|(a∈R).

(1)

判斷f(x)的奇偶性

(2)

解關于x的不等式:f(x)≥2a2

(3)

寫出f(x)的單調區(qū)間.

答案:
解析:

(1)

解:函數(shù)f(x)的定義域是R,當a=0時,f(-x)=-x|-x|=-x|x|=-f(x),

f(x)是奇函數(shù).

a≠0時,∵f(a)=0,f(-a)=-2a|a|,

f(-a)≠f(a)且f(-a)≠-f(a),

f(x)既不是奇函數(shù),也不是偶函數(shù).

(2)

解:∵x|xa|≥2a2

∴原不等式等價于   、倩    ②

由①得,無解;

由②得,即,

(1)當a=0時,x≥0;

(2)當a>0時,由,得x≥2a

(3)當a<0時,由,得x≥-a

綜上,當a≥0時,f(x)≥2a2的解集為{x|x≥2a};當a<0時,f(x)≥2a2的解集為{x|x≥-a}

(3)

解:f(x)=x|xa|=

(1)a=0時,如圖1,函數(shù)f(x)在R上為單調遞增函數(shù),(-∞,+∞)為單調遞增區(qū)間;

(2)a>0時,如圖2,函數(shù)f(x)的單調遞增區(qū)間為[a,+∞-∞,],單調遞減為[,a];

(3)a<0時,如圖2,函數(shù)f(x)的單調遞增區(qū)間為[,+∞-∞,a],單調遞減為[a,].


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x|mx|(x∈R),且f(4)=0.

(1)求實數(shù)m的值;

(2)作出函數(shù)f(x)的圖像;

(3)根據(jù)圖像指出f(x)的單調遞減區(qū)間;

(4)根據(jù)圖像寫出不等式f(x)>0的解集;

(5)求當x∈[1,5)時函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:新課標高三數(shù)學對數(shù)與對數(shù)函數(shù)、反比例函數(shù)與冪函數(shù)專項訓練(河北) 題型:解答題

已知函數(shù)f(x)=loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15],a>0,且a≠1.
(1)若1是關于x的方程f(x)-g(x)=0的一個解,求t的值;
(2)當0<a<1時,不等式f(x)≥g(x)恒成立,求t的取值范圍;

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高二下學期第二次月考文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.

(1)當a=0時,解不等式f(x)≥g(x);

(2)若任意x∈R,f(x)g(x)恒成立,求實數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆新課標高三配套第四次月考文科數(shù)學試卷(解析版) 題型:解答題

已知函數(shù)f(x)=x3+x2-ax-a,x∈R,其中a>0.

(1)求函數(shù)f(x)的單調區(qū)間;

(2)若函數(shù)f(x)在區(qū)間(-2,0)內恰有兩個零點,求a的取值范圍;

(3)當a=1時,設函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記g(t)=M(t)-m(t),求函數(shù)g(t)在區(qū)間[-3,-1]上的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖南省、岳陽縣一中高三11月聯(lián)考理科數(shù)學 題型:解答題

(本小題滿分13分)(第一問8分,第二問5分)

已知函數(shù)f(x)=2lnx,g(x)=ax2+3x.

(1)設直線x=1與曲線yf(x)和yg(x)分別相交于點P、Q,且曲線yf(x)和yg(x)在點PQ處的切線平行,若方程f(x2+1)+g(x)=3xk有四個不同的實根,求實數(shù)k的取值范圍;

(2)設函數(shù)F(x)滿足F(x)+xf′(x)-g′(x)]=-3x2-(a+6)x+1.其中f′(x),g′(x)分別是函數(shù)f(x)與g(x)的導函數(shù);試問是否存在實數(shù)a,使得當x∈(0,1]時,F(x)取得最大值,若存在,求出a的取值范圍;若不存在,說明理由.

 

查看答案和解析>>

同步練習冊答案