數(shù)列,,…,。是否可以是某一離散型隨機變量的概率分布?

答案:
解析:

解:因為,,

,所以前15項之和

由分布列性質(zhì)(2)可知本題中的數(shù)列一定不是分布列。


提示:

利用分布列的兩條性質(zhì)可以驗證該數(shù)列是否可以是某一離散型隨機變量的概率分布。


練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在平面直角坐標系上,設(shè)不等式組
x>0
y>0
y≤-m(x-3)
(n∈N*
所表示的平面區(qū)域為Dn,記Dn內(nèi)的整點(即橫坐標和縱坐標均
為整數(shù)的點)的個數(shù)為an(n∈N*).
(Ⅰ)求a1,a2,a3并猜想an的表達式再用數(shù)學(xué)歸納法加以證明;
(Ⅱ)設(shè)數(shù)列{an}的前項和為Sn,數(shù)列{
1
Sn
}的前項和Tn,
是否存在自然數(shù)m?使得對一切n∈N*,Tn>m恒成立.若存在,
求出m的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知公差大于零的等差數(shù)列{an}的前n項和為Sn,且滿足a3•a4=117,a2+a5=22,
(1)求通項an
(2)若數(shù)列{bn}滿足bn=
Snn+c
,是否存在非零實數(shù)c,使得{bn}為等差數(shù)列?若存在,求出c的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•重慶一模)對于數(shù)列{an},若存在一個常數(shù)M,使得對任意的n∈N*,都有|an|≤M,則稱{an}為有界數(shù)列.
(Ⅰ)判斷an=2+sinn是否為有界數(shù)列并說明理由.
(Ⅱ)是否存在正項等比數(shù)列{an},使得{an}的前n項和Sn構(gòu)成的數(shù)列{Sn}是有界數(shù)列?若存在,求數(shù)列{an}的公比q的取值范圍;若不存在,請說明理由.
(Ⅲ)判斷數(shù)列an=
1
3
+
1
5
+
1
7
+…+
1
2n-1
(n≥2)
是否為有界數(shù)列,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項和為Sn,且對一切正整數(shù)n,點Pn(n,Sn)都在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差數(shù)列{bn}的任一項bn∈A∩B,其中b1是A∩B中最的小數(shù),且88<b8<93,求{bn}的通項公式;
(3)設(shè)數(shù)列{cn}滿足cn=
nan-1
,是否存在正整數(shù)p,q(1<p<q),使得c1,cp,cq成等比數(shù)列?若存在,求出所有的p,q的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果項數(shù)均為n(n≥2,n∈N+)的兩個數(shù)列{an},{bn}滿足ak-bk=k(1,2,…,n),且集合{a1,a2,…,an,b1,b2,…,bn}={1,2,3,…,2n},則稱數(shù)列{an},{bn}是一對“n項相關(guān)數(shù)列”.
(Ⅰ)設(shè){an},{bn}是一對“4項相關(guān)數(shù)列”,求a1+a2+a3+a4和b1+b2+b3+b4的值,并寫出一對“4項相關(guān)數(shù)列”{an},{bn};
(Ⅱ)是否存在“15項相關(guān)數(shù)列”{an},{bn}?若存在,試寫出一對{an},{bn};若不存在,請說明理由;
(Ⅲ)對于確定的n,若存在“n項相關(guān)數(shù)列”,試證明符合條件的“n項相關(guān)數(shù)列”有偶數(shù)對.

查看答案和解析>>

同步練習冊答案