18
方法一
(1)證:∵CD⊥AB,CD⊥BC,∴CD⊥平面ABC
又∵CDÌ平面ACD,∴平面ACD⊥平面ABC
(2)解:∵AB⊥BC,AB⊥CD,∴AB⊥平面BCD,故AB⊥BD
∴∠CBD是二面角C-AB-D的平面角
∵在Rt△BCD中,BC = CD,∴∠CBD = 45°
即二面角C-AB-D的大小為45°
(3)解:過點B作BH⊥AC,垂足為H,連結(jié)DH
∵平面ACD⊥平面ABC,∴BH⊥平面ACD,
∴∠BDH為BD與平面ACD所成的角
設(shè)AB = a,在Rt△BHD中,,
∴
又,∴
方法二
(1)同方法一
(2)解:設(shè)以過B點且∥CD的向量為x軸,為y軸和z軸建立如圖所示的空間直角坐標(biāo)系,設(shè)AB = a,則A(0,0,a),C(0,1,0),D(1,1,0), = (1,1,0), = (0,0,a)
平面ABC的法向量 = (1,0,0)
設(shè)平面ABD的一個法向量為n = (x,y,z),則
取n = (1,-1,0) 6分
∴二面角C-AB-D的大小為45°
(3)解: = (0,1,-a), = (1,0,0), = (1,1,0)
設(shè)平面ACD的一個法向量是m = (x,y,z),則
∴可取m = (0,a,1),設(shè)直線BD與平面ACD所成角為,則向量、m的夾角為
故
即
又,∴
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
第t天 | 4 | 10 | 16 | 22 |
Q(萬股) | 36 | 30 | 24 | 18 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com