已知函數(shù)
(1)若函數(shù)在點處的切線與圓相切,求的值;
(2)當時,函數(shù)的圖像恒在坐標軸軸的上方,試求出的取值范圍.
(1);(2).
解析試題分析:本題綜合考查函數(shù)與導數(shù)及運用導數(shù)研究函數(shù)的單調(diào)區(qū)間、最值等數(shù)學知識和方法,突出考查綜合運用數(shù)學知識和方法分析問題、解決問題的能力,考查函數(shù)思想、分類討論思想.第一問,先將代入中,得到切點的縱坐標,對求導,將代入得到切線的斜率,所以點斜式寫出切線方程,因為它與圓相切,所以圓心到切線的距離等于半徑,列出表達式,求出;第二問,對求導,通過分析可轉(zhuǎn)化為當時,恒成立,設(shè),討論,討論的正負,通過拋物線的性質(zhì),求最小值.
試題解析:(1) ,而,故,
所以在點處的切線方程為,即,
由,配方得,故該圓的圓心為,半徑,
由題意可知,圓與直線相切,所以,
即,解得.
(2)函數(shù)的定義域為,,
由題意,只需當時,恒成立.
設(shè)(),,
當時,,當時,恒成立,即恒成立,
故在上是增函數(shù),∴當時,,
當時,函數(shù)的對稱軸,則在上是增函數(shù),
當時,,∴,∴在上是增函數(shù),
∴當時,,
當時,函數(shù)的對稱軸,在是減函數(shù),,
故,∴在是減函數(shù),
∴當時,與當時,矛盾,
綜上所述,的取值范圍是.
考點:1.利用導數(shù)求切線的方程;2.點到直線的距離公式;3.利用導數(shù)求函數(shù)最值.
科目:高中數(shù)學 來源: 題型:解答題
已知實數(shù)函數(shù)(為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間及最小值;
(Ⅱ)若≥對任意的恒成立,求實數(shù)的值;
(Ⅲ)證明:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某出版社新出版一本高考復習用書,該書的成本為5元/本,經(jīng)銷過程中每本書需付給代理商m元(1≤m≤3)的勞務費,經(jīng)出版社研究決定,新書投放市場后定價為元/本(9≤≤11),預計一年的銷售量為萬本.
(1)求該出版社一年的利潤(萬元)與每本書的定價的函數(shù)關(guān)系式;
(2)當每本書的定價為多少元時,該出版社一年的利潤最大,并求出的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
某廠生產(chǎn)產(chǎn)品x件的總成本(萬元),已知產(chǎn)品單價P(萬元)與產(chǎn)品件數(shù)x滿足:,生產(chǎn)100件這樣的產(chǎn)品單價為50萬元,產(chǎn)量定為多少件時總利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)
(Ⅰ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若,對定義域內(nèi)任意x,均有恒成立,求實數(shù)a的取值范圍?
(Ⅲ)證明:對任意的正整數(shù),恒成立。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
若函數(shù)(為實常數(shù)).
(1)當時,求函數(shù)在處的切線方程;
(2)設(shè).
①求函數(shù)的單調(diào)區(qū)間;
②若函數(shù)的定義域為,求函數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)若函數(shù)在上是增函數(shù),求正實數(shù)的取值范圍;
(Ⅱ)若,且,設(shè),求函數(shù)在上的最大值和最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com