函數(shù)y=x-2sinx在區(qū)間[-
3
3
]上的最大值為
 
分析:由題意先對函數(shù)y進行求導,解出極值點,然后再根據(jù)函數(shù)的定義域,把極值點和區(qū)間端點值代入已知函數(shù),比較函數(shù)值的大小,從而求解.
解答:解:∵函數(shù)y=x-2sinx   x∈[-
3
,
3
]
∴y′=1-2cosx,
令y′=0得,cosx=
1
2

∴x=
π
3
或-
π
3
,
∴f(
π
3
)=
π
3
-2×
3
2
=
π
3
-
3
,f(-
π
3
)=
3
-
π
3

∵f(-
3
)=-
3
-2×(-
3
2
)=-
3
+
3
,
f(
3
)=
3
-
3

∴f(x)最大值為
3
-
π
3
,
故答案為
3
-
π
3
點評:此題考查導數(shù)的定義及利用導數(shù)來求閉區(qū)間函數(shù)的最值,解題的關鍵是求導要精確.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=[2sin(x+
π
3
)+sinx]cosx-
3
sin2x

(1)若函數(shù)y=f(x)的圖象關于直線x=a(a>0)對稱,求a的最小值;
(2)若存在x0∈[0,
5
12
π]
,使mf(x0)-2=0成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
2
sin(2x+
π
4
)
,給出下列四個命題:
①函數(shù)在區(qū)間[
π
8
8
]
上是減函數(shù);       
②直線x=
π
8
是函數(shù)圖象的一條對稱軸;
③函數(shù)f(x)的圖象可由函數(shù)y=
2
sin2x
的圖象向左平移
π
4
而得到;
④若 x∈[0,
π
2
]
,則f(x)的值域是[0,
2
]

其中正確命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(2x-
π3
)+1
,
(1)求函數(shù)y=f(x)的最大、最小值以及相應的x值;
(2)若x∈[0,2π],求函數(shù)y=f(x)的單調(diào)增區(qū)間;
(3)若y>2,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sin(x+
π
6
)-2cosx

(1)用五點法作出函數(shù)y=f(x)一個周期內(nèi)的圖象;
(2)當x∈[
π
2
,π]
時,觀察圖象并寫出函數(shù)f(x)的單調(diào)區(qū)間及函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2007•湛江二模)函數(shù)y=Asinωxcosωx(A>0,ω>0)的最小正周期是π,最大值是2,則函數(shù)f(x)=2sin(ωx+
π
A
)
的一個單調(diào)遞增區(qū)間是( 。

查看答案和解析>>

同步練習冊答案