(本小題滿分14分)
已知函數(shù)是奇函數(shù).
(1)求實數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并給出證明;
(3)當(dāng)時,函數(shù)的值域是,求實數(shù)與的值。
(1)(舍去)或.此時函數(shù)定義域為 ,關(guān)于原點對稱。
(2)由單調(diào)函數(shù)的定義得:當(dāng)時,在上是減函數(shù).
同理當(dāng)時,在上是增函數(shù).
(3),.
【解析】
試題分析:(1)由已知條件得
對定義域中的均成立.…………………………1分
即 …………………2分
對定義域中的均成立. 即(舍去)或.
此時函數(shù)定義域為 ,關(guān)于原點對稱。 ……………4分
(2)由(1)得
設(shè),
當(dāng)時,
. ………………6分
當(dāng)時,,即.………………7分
當(dāng)時,在上是減函數(shù). ……………………………8分
同理當(dāng)時,在上是增函數(shù). ……………………9分
(3)函數(shù)的定義域為,
① 當(dāng)時, .
在為增函數(shù),
要使值域為,則(無解) ………………11分
②當(dāng)時, .
在為減函數(shù),
要使的值域為, 則
,. ……………14分
考點:本題主要考查對數(shù)函數(shù)的性質(zhì),函數(shù)的單調(diào)性。
點評:綜合題,本題以復(fù)合對數(shù)函數(shù)為載體,綜合考查對數(shù)函數(shù)的性質(zhì),函數(shù)的單調(diào)性,函數(shù)的奇偶性,對考生數(shù)學(xué)式子變形能力要求較高。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標(biāo);(2)設(shè)A、B是橢圓C1的兩個焦點,當(dāng)a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com