偶函數(shù)f(x)在[0,+∞)上為減函數(shù),不等式f(ax-1)>f(2+x2)恒成立,則a的取值范圍是( 。
A.(-2,2
3
)
B.(-2
3
,2)
C.(-2
3
,2
3
)
D.(-2,2)
由題意可得,偶函數(shù)f(x)在(-∞,0]上為增函數(shù),
再根據(jù)不等式f(ax-1)>f(2+x2)恒成立可得|ax-1|<2+x2恒成立.
故有-2-x2<ax-1<2+x2,即
x2+ax+1>0
x2-ax+3>0
恒成立.
∴△=a2-4<0,且△′=a2-12<0,
解得a2<4,即-2<a<2,
故選:D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知f(x)是周期為2的偶函數(shù).當(dāng)0≤x≤1時(shí),f(x)的圖象是如圖中的線段AB,那么f(
4
3
)
=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知f(x)(x∈R,且x≠kπ+
π
2
(k∈Z))是周期為π的函數(shù),當(dāng)x∈(-
π
2
,
π
2
)時(shí),f(x)=2x+cosx.設(shè)a=f(-1),b=f(-2),c=f(-3)則(  )
A.c<b<aB.b<c<aC.c<a<bD.a(chǎn)<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)?a、b∈R,運(yùn)算“⊕”、“?”定義為:a⊕b=
a(a<b)
b(a≥b)
,a?b=
a(a≥b)
b(a<b)
,則下列各式其中不恒成立的是( 。
(1)a?b+a⊕b=a+b
(2)a?b-a⊕b=a-b
(3)[a?b]•[a⊕b]=a•b
(4)[a?b]÷[a⊕b]=a÷b.
A.(1)(3)B.(2)(4)C.(1)(2)(3)D.(1)(2)(3)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=4x-2•2x+1-6,其中x∈[0,3].
(1)求函數(shù)f(x)的最大值和最小值;
(2)若實(shí)數(shù)a滿足:f(x)-a≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定義域?yàn)镽的函數(shù)f(x)=
2x-b
2x+a
是奇函數(shù).
(1)求a,b的值;
(2)利用定義判斷函數(shù)y=f(x)的單調(diào)性;
(3)若對(duì)任意t∈[0,1],不等式f(2t2+kt)+f(k-t2)>0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)y=f(x)是R上的偶函數(shù),且在[0,+∞)上是減函數(shù),若f(log2x)>f(1)則x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=x2-2ax+b是定義在區(qū)間[-2b,3b-1]上的偶函數(shù),則函數(shù)f(x)的值域?yàn)開_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x+
3
x

(1)用函數(shù)單調(diào)定義研究函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(2)判斷函數(shù)f(x)的奇偶性,并證明之;
(3)根據(jù)函數(shù)的單調(diào)性和奇偶性作出函數(shù)f(x)的圖象,寫出該函數(shù)的單調(diào)減區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案