曲線y=x3-2x+4在點(1,3)處的切線的斜率為
 
分析:求曲線在點處得切線的斜率,就是求曲線在該點處得導(dǎo)數(shù)值,先求導(dǎo)函數(shù),然后將點的橫坐標(biāo)代入即可求得結(jié)果.
解答:解:∵y=x3-2x+4,
∴y′=3x2-2,
令x=1,即可得斜率為:k=y′|x=1=1.
故答案為:1.
點評:本題考查了導(dǎo)數(shù)的幾何意義,它把函數(shù)的導(dǎo)數(shù)與曲線的切線聯(lián)系在一起,使導(dǎo)數(shù)成為函數(shù)知識與解析幾何知識交匯的一個重要載體,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

12、若曲線y=x3-2x+a與直線y=x+1相切,則常數(shù)a的值為
-1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x+4在點(1,3)處的切線的傾斜角為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=x3-2x在點(1,-1)處的切線方程是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=-x3+2x在點(-1,-1)處的切線的傾斜角是
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)曲線y=x3-2x+4在點(1,3)處的切線為l,則直線l與坐標(biāo)軸圍成的三角形面積為( 。

查看答案和解析>>

同步練習(xí)冊答案