19.?dāng)?shù)列{an}中,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,且a1=2,求a2008

分析 an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,且a1=2,可得a2=$\frac{1+2}{1-2}$=-3,a3=-$\frac{1}{2}$,a4=$\frac{1}{3}$,a5=2.…,an+4=an.即可得出.

解答 解:∵an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$,且a1=2,
∴a2=$\frac{1+2}{1-2}$=-3,a3=$\frac{1-3}{1-(-3)}$=-$\frac{1}{2}$,a4=$\frac{1-\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,a5=$\frac{1+\frac{1}{3}}{1-\frac{1}{3}}$=2.
…,
∴an+4=an
∴a2008=a502×4=a4=$\frac{1}{3}$.

點(diǎn)評(píng) 本題考查了遞推關(guān)系、數(shù)列的周期性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.化簡(jiǎn):$\frac{cos(x-3π)si{n}^{2}(x-5π)}{cos(-x-5π)sin(-x)cos(\frac{3π}{2}-x)}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)角α=-$\frac{35}{6}$π,則$\frac{2sin(π+α)cos(π-α)-cos(π+α)}{1+si{n}^{2}α+sin(π-α)-co{s}^{2}(π+α)}$的值等于$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知平面直角坐標(biāo)系中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t是參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C:ρ=2cosθ.
(1)求曲線C的直角坐標(biāo)系方程和直線l的普通方程;
(2)直線l和x軸交于點(diǎn)A,點(diǎn)B是曲線C上的動(dòng)點(diǎn),求AB的中點(diǎn)D到直線l的距離的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.直線l經(jīng)過(guò)直線l1:y=-x+1和l2:y=2x+4的交點(diǎn)且與直線l3:x-3y+2=0垂直,則直線l的方程為3x+y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.設(shè)平面α⊥平面β,點(diǎn)P在平面α內(nèi),過(guò)點(diǎn)P作平面β的垂線α,直線α與平面α具有什么位置關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.求雙曲線4x2一ky2=4k的虛軸長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.如圖在三棱錐S-ABC中,△ABC是邊長(zhǎng)為2的正三角形,平面SAC⊥平面ABC,SA=SC=$\sqrt{2}$,M為AB的中點(diǎn).
(I)證明:AC⊥SB;
(Ⅱ)求點(diǎn)B到平面SCM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知正△ABC的邊長(zhǎng)為1,那么在斜二側(cè)畫(huà)法中它的直觀圖△A′B′C′的面積為$\frac{{\sqrt{6}}}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案