把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個單位后得到偶函數(shù)g(x)的圖象.
(Ⅰ)求φ的值;
(Ⅱ)求函數(shù)h(x)=f(x-
π
12
)-g(x)的單調(diào)增區(qū)間.
(I)把函數(shù)f(x)=2sin(2x+φ)(0<φ<π)的圖象向左平移
π
6
個單位后得到:
g(x)=2sin[2(x+
π
6
)+φ]的圖象,
∵函數(shù)g(x)為偶函數(shù),
故當x=0時,2×
π
6
+φ=
π
2
+kπ
,即φ=
π
6
+kπ
,k∈Z,
又∵0<φ<π,
∴φ=
π
6
,
(II)由(I)得:f(x)=2sin(2x+
π
6
),
∴f(x-
π
12
)=2sin2x
g(x)=2sin(2x+
π
2
)=2cos2x,
∴h(x)=f(x-
π
12
)-g(x)=2sin2x-2cos2x=2
2
sin(2x+
π
4
),
由2x+
π
4
∈[-
π
2
+2kπ,
π
2
+2kπ]得:x∈[-
8
+2kπ,
π
8
+2kπ],(k∈Z),
故函數(shù)h(x)=f(x-
π
12
)-g(x)的單調(diào)增區(qū)間為[-
8
+2kπ,
π
8
+2kπ],(k∈Z)
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分圖象如圖所示.
(1)求f(x)的表達式;
(2)若f(x)•f(-x)=
1
4
x∈(
π
4
,
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

函數(shù)f(x)=3sin(2x-
π
3
)的圖象為C,如下結(jié)論中正確的是______
①圖象C關(guān)于直線x=
11
12
π對稱;
②圖象C關(guān)于點(
3
,0)對稱;
③函數(shù)即f(x)在區(qū)間(-
π
12
12
)內(nèi)是增函數(shù);
④由y=3sin2x的圖角向右平移
π
3
個單位長度可以得到圖象C.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)f(x)是定義域為R,最小正周期是
2
的函數(shù),且當0≤x≤π時,f(x)=sinx,則f(-
15π
4
)
=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象與y軸的交點為(0,1),它在y軸右側(cè)的第一個最高點和第一個最低點的坐標分別為(x0,2)和(x0+2π,-2).
(1)求f(x)的解析式及x0的值;
(2)若銳角θ滿足cosθ=
1
3
,求f(4θ)的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖是函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|
π
2
)的部分圖象,
(1)求函數(shù)f(x)的解析式;
(2)當x∈(-
π
2
,0)
時,求函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

要得到函數(shù)y=cos(
x
2
-
π
4
)
的圖象,只需將y=cos
x
2
的圖象(  )
A.向右平移
π
4
個單位
B.向右平移
π
8
個單位
C.向右平移
π
2
個單位
D.向左平移
π
2
個單位

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知等于(   ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

計算:的結(jié)果等于______.

查看答案和解析>>

同步練習冊答案