半徑為r的球的內(nèi)接圓柱的最大側(cè)面積為   
【答案】分析:由題意圓柱的底面為球的截面,由球的截面性質(zhì)可得出圓柱的高為h、底面半徑為R與球的半徑為r的關(guān)系,再用h和R表示出圓柱的側(cè)面積,利用基本不等式求最值即可.
解答:解:如圖為軸截面,令圓柱的高為h,底面半徑為R,側(cè)面積為S,
則( 2+R2=r2,
即h=2
∵S=2πRh=4πR•=4π ≤4π =2πr2
取等號(hào)時(shí),內(nèi)接圓柱底面半徑為 r,高為 r.
故答案為:2πr2
點(diǎn)評(píng):本題考查球與圓柱的組合體問題、以及利用基本不等式求最值問題,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)研究發(fā)現(xiàn):平面內(nèi),半徑為R的圓的內(nèi)接矩形中,以正方形的周長為最大,最大值為4
2
R
.通過類比,我們可得結(jié)論:在空間,半徑為R的球的內(nèi)接長方體中,以
 
的表面積為最大,最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由“半徑為R的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為2R2”,類比猜想關(guān)于球的相應(yīng)命題為:
半徑為R的球的內(nèi)接長方體中以正方體的體積為最大,最大值為
8
3
9
R3
半徑為R的球的內(nèi)接長方體中以正方體的體積為最大,最大值為
8
3
9
R3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省徐州市六校高二(下)期中數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

由“半徑為R的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為2R2”,類比猜想關(guān)于球的相應(yīng)命題為:   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省宜昌市長陽一中高二(下)第一次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

由“半徑為R的圓的內(nèi)接矩形中,以正方形的面積為最大,最大值為2R2”,類比猜想關(guān)于球的相應(yīng)命題為:   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省連云港市東海高級(jí)中學(xué)高考數(shù)學(xué)考前猜題試卷(4)(解析版) 題型:解答題

經(jīng)研究發(fā)現(xiàn):平面內(nèi),半徑為R的圓的內(nèi)接矩形中,以正方形的周長為最大,最大值為.通過類比,我們可得結(jié)論:在空間,半徑為R的球的內(nèi)接長方體中,以    的表面積為最大,最大值為   

查看答案和解析>>

同步練習(xí)冊(cè)答案