(本小題滿分14分)
已知集合是滿足下列性質(zhì)的函數(shù)的全體, 存在非零常數(shù), 對任意, 有成立.
(1) 函數(shù)是否屬于集合?說明理由;
(2) 設(shè), 且, 已知當時, , 求當時, 的解析式.
(3)若函數(shù),求實數(shù)的取值范圍.
(1) . (2)當時, .
(3){k|k= nπ, n∈Z}
【解析】(1) 假設(shè)函數(shù)屬于集合, 則存在非零常數(shù), 對任意, 有成立,即: 成立.在不成立的情況下,易用反例說明.因而 令, 則, 與題矛盾. 故.
(2)解決本題的關(guān)鍵是,根據(jù)1<x+4<2,從而根據(jù)時, 求出f(x)的表達式.
(3) 解本題應(yīng)討論當k=0和k≠0兩種情況.
然后解決本題的突破口是對任意x∈R,有f(x+T)=T f(x)成立,即sin(kx+kT)=Tsinkx
因為k≠0,且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx ∈[-1,1],sin(kx+kT) ∈[-1,1],
故要使sin(kx+kT)=Tsinkx .成立,只有T=,下面再對T=1和T=-1兩種情況進行討論.
解:(1) 假設(shè)函數(shù)屬于集合, 則存在非零常數(shù), 對任意, 有成立,
即: 成立. 令, 則, 與題矛盾. 故. …………5分
注:只要能判斷即可得1分.
(2) , 且, 則對任意, 有,
設(shè), 則, …………8分
當時, ,
故當時, . …………10分
3)當k=0時,f(x)=0,顯然f(x)=0∈M. …………11分
當k≠0時,因為f(x)=sinkx∈M,所以存在非零常數(shù)T,對任意x∈R,有
f(x+T)=T f(x)成立,即sin(kx+kT)=Tsinkx .
因為k≠0,且x∈R,所以kx∈R,kx+kT∈R,
于是sinkx ∈[-1,1],sin(kx+kT) ∈[-1,1],
故要使sin(kx+kT)=Tsinkx .成立,只有T=, …………12分
①當T=1時,sin(kx+k)=sinkx 成立,則k=2mπ, m∈Z .
②當T=-1時,sin(kx-k)=-sinkx 成立,
即sin(kx-k+π)= sinkx 成立,
則-k+π=2mπ, m∈Z ,即k=-(2m-1)π, m∈Z . …………13分
綜合得,實數(shù)k的取值范圍是{k|k= nπ, n∈Z} …………14分
科目:高中數(shù)學(xué) 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分14分)設(shè)橢圓C1的方程為(a>b>0),曲線C2的方程為y=,且曲線C1與C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設(shè)A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設(shè)g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年江西省撫州市教研室高二上學(xué)期期末數(shù)學(xué)理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設(shè),求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2015屆山東省威海市高一上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
某網(wǎng)店對一應(yīng)季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關(guān)于第天的函數(shù)關(guān)系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省高三下學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點處的切線與直線平行.
⑴ 求,滿足的關(guān)系式;
⑵ 若上恒成立,求的取值范圍;
⑶ 證明:()
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com