x | 1 | 2 | 3 | 4 | 5 |
y | 3 | 5 | 7 | 10 | 11 |
分析 (1)由題意,計算樣本數(shù)據(jù)的平均值,求出對應(yīng)回歸直線方程的系數(shù)即可;
(2)根據(jù)回歸直線方程中$\stackrel{∧}$>0,判斷是正相關(guān),利用回歸方程計算x=10時$\stackrel{∧}{y}$的值即可.
解答 解:(1)由題意:n=5,
計算$\overline x=\frac{1}{5}\sum_{i=1}^5{{x_i}=3}$,
$\overline y=\frac{1}{5}\sum_{i=1}^5{{y_i}=7.2}$,
又$\sum_{i=1}^{5}$${{x}_{i}}^{2}$-5${\overline{x}}^{2}$=55-5×9=10,
$\sum_{i=1}^5{{x_i}{y_i}-5\overline{xy}=129-5×3×7.2=21}$;
∴$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline{xy}}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{21}{10}=2.1$,
$\widehata=\overline y-b\overline x=7.2-2.1×3=0.9$,
即所求的回歸方程為$\widehaty=2.1x+0.9$;
(2)由于變量y的值隨溫度x的值增加而增加($\stackrel{∧}$=2.1>0),
∴x與y之間是正相關(guān)關(guān)系;
當x=10時,$\stackrel{∧}{y}$=2.1×10+0.9=21.9,
即預(yù)測當溫度達到10°時反應(yīng)結(jié)果為21.9.
點評 本題考查了線性回歸方程的求法與應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(2)>f(2m)>f(log2m) | B. | f(log2m)>f(2m)>f(2) | C. | f(2m)>f(log2m)>f(2) | D. | f(2m)>f(2)>f(log2m) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | AD | B. | CD | C. | PC | D. | PD |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com