若函數(shù)f(x)=
1+3x+a•9x
,其定義域?yàn)椋?∞,1],則a的取值范圍是( 。
分析:函數(shù)f(x)的定義域?yàn)椋?∞,1],即不等式1+3x+a•9x≥0的解集為(-∞,1],令t=3x換元后,得到不等式at2+t+1≥0的解集為(0,3],由此可知該不等式對(duì)應(yīng)的函數(shù)開(kāi)口向下,且函數(shù)與t軸的右交點(diǎn)為(3,0).
解答:解:∵函數(shù)f(x)=
1+3x+a•9x
的定義域?yàn)椋?∞,1],
∴不等式1+3x+a•9x≥0的解集為(-∞,1],
令t=3x,則不等式at2+t+1≥0的解集為(0,3].
再令g(t)=at2+t+1,
∴g(3)=0,即9a+4=0,解得:a=-
4
9

故選:A.
點(diǎn)評(píng):本題考查了函數(shù)的定義域及其求法,訓(xùn)練了換元法,解答的關(guān)鍵是根據(jù)不等式at2+t+1≥0的解集為(0,3]得到含有a的等式,屬中檔題,也是易錯(cuò)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•北海一模)定義一種運(yùn)算(a,b)*(c,d)=ad-bc,若函數(shù)f(x)=(1,log3x)*(tan
13π
4
,(
1
5
)x)
,x0是方程f(x)=0的解,且0<x1<x0,則f(x1)的值( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=(1-
3
tanx)cosx
,0≤x<
π
2
,則f(x)的最大值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
①函數(shù)y=sin|x|的最小正周期為π;
②若函數(shù)f(x)=log2(x2-ax+1)的值域?yàn)镽,則-2<a<2;
③若函數(shù)f(x)對(duì)任意x∈R都有f(x)=-f(2-x),且最小正周期為3,則f(x)的圖象關(guān)于點(diǎn)(-
1
2
,0)
對(duì)稱;
④極坐標(biāo)方程 4sin2θ=3 表示的圖形是兩條相交直線;
⑤若函數(shù)f(x)=(1+x)
1
x
(x>0)
,則存在無(wú)數(shù)多個(gè)正實(shí)數(shù)M,使得|f(x)|≤M成立;
其中真命題的序號(hào)是
③④⑤
③④⑤
.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•普陀區(qū)一模)若函數(shù)f(x)=1-
x-3
,x∈[3,+∞)
,則方程f-1(x)=7的解是
x=-1
x=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=1+xcos
π•x2
,則f(1)+f(2)+…+f(100)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案