已知二次函數(shù),設方程的兩個實根為x1x2.

   (1)如果,若函數(shù)的對稱軸為x=x0,求證:x0>-1;

   (2)如果,求b的取值范圍.

證明見解析


解析:

(1)設,由, 即

            ,

;

(2)由同號.

①若.

,負根舍去)代入上式得

,解得;

②若 即4a-2b+3<0.

同理可求得.

    故當

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+1(a>0,b∈R),方程f(x)=x有兩個實數(shù)根x1、x2
(Ⅰ)如果x1<2<x2<4,設函數(shù)f(x)的對稱軸為x=x0,求證x0>-1;
(Ⅱ)如果0<x1<2,且f(x)=x的兩實根相差為2,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)y=f(x)在x=
t+2
2
處取得最小值-
t2
4
(t>0),f(1)=0
(1)求y=f(x)的表達式;
(2)若任意實數(shù)x都滿足f(x)•g(x)+anx+bn=xn+1(g(x)為多項式,n∈N+),試用t表示an和bn;
(3)設圓Cn的方程(x-an2+(y-bn2=rn2,圓Cn與Cn+1外切(n=1,2,3,…),{rn}是各項都是正數(shù)的等比數(shù)列,記Sn為前n個圓的面積之和,求rn,Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù)f(x)=ax2+bx+c.
(1)若a>b>c且f(1)=0,判斷函數(shù)f(x)的圖象與x軸公共點的個數(shù);
(2)證明:若對x1,x2且x1<x2,f(x1)≠f(x2),則方程f(x)=
f(x1)+f(x2)2
必有一實根在區(qū)間(x1,x2)內;
(3)在(1)的條件下,設f(x)=0的另一根為x0,若方程f(x)+a=0有解證明-2<x0≤-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二次函數(shù),設方程的兩個實數(shù)根為.

(1)如果,設函數(shù)的對稱軸為,求證:;

(2)如果,,求的取值范圍.

查看答案和解析>>

同步練習冊答案