15.設(shè)集合A={x|x2-9<0},B={x|2x∈N},則A∩B的元素的個(gè)數(shù)為( 。
A.3B.4C.5D.6

分析 先分別求出集體合A和B,由此能求出A∩B的元素的個(gè)數(shù).

解答 解:∵集合A={x|x2-9<0}={x|-3<x<3},
B={x|2x∈N},所以集合B中x可取0,0.5,1,1.5,2,2.5
∴A∩B={0,0.5,1,1.5,2,2.5},
∴A∩B的元素的個(gè)數(shù)為6個(gè).
故選:D.

點(diǎn)評(píng) 本題考查交集中元素個(gè)數(shù)的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意交集性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知P(x,y)是圓(x+1)2+y2=1上一點(diǎn),則2x+3y的最大值為$\sqrt{13}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知橢圓$E:\frac{x^2}{4}+{y^2}=1$的左右頂點(diǎn)分別為A,B,點(diǎn)P為橢圓上異于A,B的任意一點(diǎn).
(Ⅰ)求直線PA與PB的斜率之積;
(Ⅱ)過(guò)點(diǎn)Q(-1,0)作與x軸不重合的直線交橢圓E于M,N兩點(diǎn).問(wèn):是否存在以MN為直徑的圓經(jīng)過(guò)點(diǎn)A,若存在,請(qǐng)求出直線MN.若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.圓x2+y2=8內(nèi)有一點(diǎn)P0(-1,2),AB為過(guò)點(diǎn)P0且傾斜角為α的弦.
(1)當(dāng)α=135°時(shí),求AB的長(zhǎng);
(2)當(dāng)弦被點(diǎn)P0平分時(shí),寫(xiě)出直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知復(fù)數(shù)z滿足iz=|3+4i|-i,則z的共軛復(fù)數(shù)的虛部是( 。
A.-5B.1C.5D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知$sinαcosα=-\frac{7}{16}$,$α∈(\frac{π}{2},π)$,則當(dāng)正數(shù)m=2時(shí),使得$mcos2α=sin(\frac{π}{4}-α)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.定義:以原雙曲線的實(shí)軸為虛軸,虛軸為實(shí)軸的雙曲線為原雙曲線的共軛雙曲線,已知雙曲線$\frac{y^2}{4}-{x^2}=1$的共軛雙曲線為C,過(guò)點(diǎn)A(4,4)能做m條直線與C只有一個(gè)公共點(diǎn),設(shè)這m條直線與雙曲線C的漸近線圍成的區(qū)域?yàn)镚,如果點(diǎn)P、Q在區(qū)域G內(nèi)(包括邊界)則$|{\overrightarrow{PQ}}|$的最大值為(  )
A.10B.$4\sqrt{10}$C.17D.$2\sqrt{17}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知點(diǎn)E、F的坐標(biāo)分別是(-2,0)、(2,0),直線EP、FP相交于點(diǎn)P,且它們的斜率之積為$-\frac{1}{4}$.
(1)求證:點(diǎn)P的軌跡在一個(gè)橢圓C上,并寫(xiě)出橢圓C的方程;
(2)設(shè)過(guò)原點(diǎn)O的直線AB交(1)中的橢圓C于點(diǎn)A、B,定點(diǎn)M的坐標(biāo)為$(1,\frac{1}{2})$,試求△MAB面積的最大值,并求此時(shí)直線AB的斜率kAB

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)$f(x)={x^2}+lg(x+\sqrt{{x^2}+1})$,若f(a)=M,則f(-a)等于( 。
A.2a2-MB.M-2a2C.2M-a2D.a2-2M

查看答案和解析>>

同步練習(xí)冊(cè)答案