如圖,ABCD-A1B1C1D1是正方體,E、F分別是AD、DD1的中點,則面EFC1B和面BCC1所成二面角的正切值等于( 。
A、2
2
B、
3
C、
5
D、
7
考點:二面角的平面角及求法
專題:計算題,作圖題,空間位置關(guān)系與距離
分析:由題意作圖,取BC的中點M,作MN⊥BC1于點N,連結(jié)EN,EM;從而可得∠ENM為面EFC1B和面BCC1所成二面角的平面角,從而解得.
解答: 解:由題意作圖如右圖,
取BC的中點M,作MN⊥BC1于點N,
連結(jié)EN,EM;
易知EM∥AB,
∵AB⊥平面面BCC1,
∴EM⊥平面面BCC1
故∠ENM為面EFC1B和面BCC1所成二面角的平面角,
設(shè)正方體的邊長為a,在Rt△EMN中,
EM=a,MN=
a
2
2
a
a=
2
4
a;
故tan∠ENM=
EM
MN
=2
2

故選A.
點評:本題考查了二面角的作法及求法,考查了學(xué)生的空間想象力及作圖能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若橢圓x2+my2=1的離心率為
1
2
,則它的焦距為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果等差數(shù)列{an}中,a3+a4+a5=12,那么a1+a2+…a7=( 。
A、14B、21C、28D、35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知t>0,若
t
0
(2x-2)dx=3,則t=( 。
A、3B、2C、1D、3或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x+φ),其中φ為實數(shù),若f(x)≤f(
π
6
),對x∈R恒成立,且f(
π
2
)<f(π),則f(x)的單調(diào)遞增區(qū)間是( 。
A、[kπ-
π
3
,kπ+
π
6
],k∈Z
B、[kπ,kπ+
π
2
],k∈Z
C、[kπ+
π
6
,kπ+
3
],k∈Z
D、[kπ-
π
2
,kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的方程x2+(m-3)x+m=0
(1)若方程的一根大于2,另一根小于2,求實數(shù)m的取值范圍;
(2)若方程的兩根都小于2,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓心在拋物線y2=2x上,且與該拋物線的準(zhǔn)線和x軸都相切的圓的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x+
1
x
,x≠0
0,x=0
,則下列結(jié)論成立的是(  )
A、f(x)在x=0處連續(xù)
B、
lim
x→1
f(x)=2
C、
lim
x→0-
f(x)=0
D、
lim
x→0+
f(x)=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若<
a
,
b
>=60°,|
b
|=4,(
a
+2
b
)•(
a
-3
b
)
=-72,則|
a
|=( 。
A、2B、4C、6D、12

查看答案和解析>>

同步練習(xí)冊答案