2.《九章算術(shù)》是我國(guó)古代第一部數(shù)學(xué)專(zhuān)著,全書(shū)收集了246個(gè)問(wèn)題及其解法,其中一個(gè)問(wèn)題為“現(xiàn)有一根九節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面四節(jié)容積之和為3升,下面三節(jié)的容積之和為4升,求中間兩節(jié)的容積各為多少?”該問(wèn)題中第2節(jié),第3節(jié),第8節(jié)竹子的容積之和為( 。
A.$\frac{17}{6}$升B.$\frac{7}{2}$升C.$\frac{113}{66}$升D.$\frac{109}{33}$升

分析 自上而下依次設(shè)各節(jié)容積為:a1、a2、…、a9,由題意列出方程組,利用等差數(shù)列的性質(zhì)化簡(jiǎn)后可得答案.

解答 解:自上而下依次設(shè)各節(jié)容積為:a1、a2、…、a9
由題意得,$\left\{\begin{array}{l}{{a}_{1}{+a}_{2}{+a}_{3}{+a}_{4}=3}\\{{a}_{7}{+a}_{8}{+a}_{9}=4}\end{array}\right.$,
即$\left\{\begin{array}{l}{{2(a}_{2}{+a}_{3})=3}\\{3{a}_{8}=4}\end{array}\right.$,得$\left\{\begin{array}{l}{{a}_{2}{+a}_{3}=\frac{3}{2}}\\{{a}_{8}=\frac{4}{3}}\end{array}\right.$,
所以a2+a3+a8=$\frac{3}{2}+\frac{4}{3}=\frac{17}{6}$(升),
故選:A.

點(diǎn)評(píng) 本題考查了等差數(shù)列的性質(zhì)的靈活應(yīng)用,以及方程思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在長(zhǎng)方體ABCD-A1B1C1D1中,E,F(xiàn)分別是AB,CD1的中點(diǎn),AA1=AD=1,AB=2..
(1)求證:EF∥平面BCC1B1;
(2))求證:平面CD1E⊥平面D1DE;
(3)求三棱錐F-D1DE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,在三棱柱ABC-A1B1C1中,CA=CB=AA1,∠BAA1=∠BAC=60°,點(diǎn)O是線段AB的中點(diǎn).
(Ⅰ)證明:BC1∥平面OA1C;
(Ⅱ)若AB=2,A1C=$\sqrt{6}$,求二面角A-BC-A1的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=2cosx($\sqrt{3}$sinx+cosx)+m,(x∈R,m∈R).
(1)求f(x)的最小正周期;
(2)若f(x)在區(qū)間[0,$\frac{π}{2}$]上的最大值是6,求f(x)在區(qū)間[0,$\frac{π}{2}$]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,a、b、c分別是三內(nèi)角A、B、C對(duì)應(yīng)的三邊,已知b2+c2=a2+bc
(1)求角A的大;
(2)若2sin2$\frac{B}{2}$=cosC,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在△ABC中,C=$\frac{2π}{3}$,AB=3,則△ABC的周長(zhǎng)為(  )
A.$6sin({A+\frac{π}{3}})+3$B.$6sin({A+\frac{π}{6}})+3$C.$2\sqrt{3}sin({A+\frac{π}{3}})+3$D.$2\sqrt{3}sin({A+\frac{π}{6}})+3$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}為等差數(shù)列,其中a2+a3=8,a5=3a2
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}中,b1=1,b2=2,從數(shù)列{an}中取出第bn項(xiàng)記為cn,若{cn}是等比數(shù)列,求{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(x,2),若$\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)x的值為-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=|$\overrightarrow$=1,且|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|(k>0),令f(k)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求f(k)=$\overrightarrow{a}$•$\overrightarrow$(用k表示);
(Ⅱ)若f(k)≥x2-2tx-$\frac{1}{2}$對(duì)任意k>0,任意t∈[-1,1]恒成立,求實(shí)數(shù)x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案