定義運(yùn)算:||=a1a4-a2a3,將函數(shù)f(x)=向左平移m個(gè)單位(m>0),所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),則m的最小值是( )
A.
B.
C.
D.
【答案】分析:利用新定義,求出函數(shù)的表達(dá)式,通過(guò)函數(shù)是偶函數(shù)即可確定平行的最小值.
解答:解:因?yàn)閨|=a1a4-a2a3
所以函數(shù)f(x)==cosx+sinx=2sin(x+),
將函數(shù)f(x)=向左平移m個(gè)單位(m>0),所得圖象對(duì)應(yīng)的函數(shù)為偶函數(shù),
所以向左平移m的最小值為
故選A.
點(diǎn)評(píng):本題考查新定義的應(yīng)用,兩角和與差的三角函數(shù),三角函數(shù)的圖象的平移變換,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

8、設(shè)集合S={A0,A1,A2,A3,A4},在S上定義運(yùn)算⊙為:Ai⊙Aj=Ak,其中k=|i-j|,i,j=0,1,2,3,4.那么滿足條件(Ai⊙Aj)⊙A2=A1(Ai,Aj∈S)的有序數(shù)對(duì)(i,j)共有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

12、設(shè)集合S={A0,A1,A2,A3,A4,A5},在S上定義運(yùn)算“⊕”為:Ai⊕Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,4,5.則滿足關(guān)系式(x⊕x)⊕A2=A0的x(x∈S)的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•濰坊二模)①函數(shù)y=sin(x-
π
2
)
在[0,π]上是減函數(shù);
②點(diǎn)A(1,1)、B(2,7)在直線3x-y=0兩側(cè);
③數(shù)列{an}為遞減的等差數(shù)列,a1+a5=0,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則當(dāng)n=4時(shí),Sn取得最大值;
④定義運(yùn)算
.
a1
b1
a2
b2
.
=a1b2-a2b1
則函數(shù)f(x)=
.
x2+3x
x
1
1
3
x
.
的圖象在點(diǎn)(1,
1
3
)
處的切線方程是6x-3y-5=0.
其中正確命題的序號(hào)是
②④
②④
(把所有正確命題的序號(hào)都寫(xiě)上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合S={a0,a1,a2,a3,a4},在
OB
上定義運(yùn)算⊕為:ai⊕aj=ak,其中k為i+j被5除的余數(shù),i,j=0,1,2,3,4,則滿足關(guān)系式:(x⊕x)⊕a2=a0的x(x∈S)的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•肇慶一模)設(shè)集合M={A0,A1,A2,A3,A4,A5},在M上定義運(yùn)算“?”為:Ai?Aj=Ak,其中k為i+j被4除的余數(shù),i,j=0,1,2,3,4,5.則滿足關(guān)系式(a?a)?A2=A0的a(a∈M)的個(gè)數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案