【題目】已知函數(shù),.

1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

2)對于,為任意實(shí)數(shù),關(guān)于的方程恰好有兩個不等實(shí)根,求實(shí)數(shù)的值;

3)在(2)的條件下,若不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;(2;(3.

【解析】

1)利用和與差公式化簡,結(jié)合正弦函數(shù)的圖象及性質(zhì)即可求解函數(shù)的單調(diào)遞增區(qū)間;

2)根據(jù),,求解內(nèi)層函數(shù)的范圍,結(jié)合恰好有兩個不等實(shí)根,即可求解實(shí)數(shù)的值;(3)根據(jù)(2)中的值;可得解析式,上,求解的值域,不等式成立,即可求解實(shí)數(shù)的取值范圍.

(1)

1)當(dāng)時,可得函數(shù)

,

函數(shù)的單調(diào)遞增區(qū)間為,

2)當(dāng),時,,其周期

關(guān)于的方程恰好有兩個不等實(shí)根,即恰好有兩個不等實(shí)根,

可得

3)根據(jù)(2)中;可得

,,

,,

那么的值域?yàn)?/span>,

不等式成立,

此時

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某市大約有800萬網(wǎng)絡(luò)購物者,某電子商務(wù)公司對該市n名網(wǎng)絡(luò)購物者某年度上半年的消費(fèi)情況進(jìn)行了統(tǒng)計,發(fā)現(xiàn)消費(fèi)金額(單位:萬元)都在區(qū)間[0.5,1.1]內(nèi),其頻率分布直方圖如圖所示.

(1)求該市n名網(wǎng)絡(luò)購物者該年度上半年的消費(fèi)金額的平均數(shù)與中位數(shù)(以各區(qū)間的中點(diǎn)值代表該區(qū)間的均值).

(2)現(xiàn)從前4組中選取18人進(jìn)行網(wǎng)絡(luò)購物愛好調(diào)查.

(i)求在前4組中各組應(yīng)該選取的人數(shù);

(ii)在前2組所選取的人中,再隨機(jī)選2人,求這2人都是來自第二組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校200名學(xué)生的數(shù)學(xué)期中考試成績頻率分布直方圖如圖所示,其中成績分組區(qū)間是,,.

1)求圖中的值;

2)根據(jù)頻率分布直方圖,估計這200名學(xué)生的平均分;

3)若這200名學(xué)生的數(shù)學(xué)成績中,某些分?jǐn)?shù)段的人數(shù)與英語成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,求英語成績在的人數(shù).

分?jǐn)?shù)段

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD內(nèi)接于⊙O,AD∥BC,過點(diǎn)C作⊙O的切線,交BD的延長線于點(diǎn)P,交AD的延長線于點(diǎn)E.

(1)求證:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切線PC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量,令函數(shù),若函數(shù)的部分圖象如圖所示,且點(diǎn)的坐標(biāo)為.

(1)求點(diǎn)的坐標(biāo);

(2)求函數(shù)的單調(diào)增區(qū)間及對稱軸方程;

(3)若把方程的正實(shí)根從小到大依次排列為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某運(yùn)動員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計該運(yùn)動員三次投籃恰有兩次命中的概率:先由計算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計,該運(yùn)動員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了檢查本縣甲、乙兩所學(xué)校的學(xué)生對安全知識的學(xué)習(xí)情況,在這兩所學(xué)校進(jìn)行了安全知識測試,隨機(jī)在這兩所學(xué)校各抽取20名學(xué)生的考試成績作為樣本,成績大于或等于80分的為優(yōu)秀,否則為不優(yōu)秀,統(tǒng)計結(jié)果如下圖:

甲校 乙校

(1)從乙校成績優(yōu)秀的學(xué)生中任選兩名,求這兩名學(xué)生的成績恰有一個落在內(nèi)的概率;

(2)由以上數(shù)據(jù)完成下面列聯(lián)表,并回答能否在犯錯的概率不超過0.1的前提下認(rèn)為學(xué)生的成績與兩所學(xué)校的選擇有關(guān)。

甲校

乙校

總計

優(yōu)秀

不優(yōu)秀

總計

參考數(shù)據(jù)

P(K2≥k0

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.706

span>3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)f(x)=sin(2x+φ)+ cos(2x+φ)(0<φ<π)圖象向左平移 個單位后,得到函數(shù)的圖象關(guān)于點(diǎn)( ,0)對稱,則函數(shù)g(x)=cos(x+φ)在[﹣ ]上的最小值是( )
A.﹣
B.﹣
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的離心率為 ,焦距為2.(14分)
(Ⅰ)求橢圓E的方程.
(Ⅱ)如圖,該直線l:y=k1x﹣ 交橢圓E于A,B兩點(diǎn),C是橢圓E上的一點(diǎn),直線OC的斜率為k2 , 且看k1k2= ,M是線段OC延長線上一點(diǎn),且|MC|:|AB|=2:3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點(diǎn)分別為S,T,求∠SOT的最大值,并求取得最大值時直線l的斜率.

查看答案和解析>>

同步練習(xí)冊答案