已知xy為正實(shí)數(shù),且滿足關(guān)系式x2-2x+4y2=0,求x·y的最大值.

思路分析:題中有兩個(gè)變量xy,首先應(yīng)選擇一個(gè)主要變量,將x、y表示為某一變量(xy或其他變量)的函數(shù)關(guān)系,實(shí)現(xiàn)問(wèn)題的轉(zhuǎn)化,同時(shí)根據(jù)題設(shè)條件確定變量的取值范圍,再利用導(dǎo)數(shù)(或均值不等式等)求函數(shù)的最大值.

?解:4y2=2x-x2,

y>0,?

y=,

x·y=x.?

解得0<x≤2.

設(shè)fx)=xy=x(0<x≤2).?

當(dāng)0<x<2時(shí),f′(x)=+]=.?

〔注:()′=〕?

f′(x)=0,得x=x=0(舍).?

f)=,又f(2)=0,?

∴函數(shù)fx)的最大值為.?

x·y的最大值為.

溫馨提示

解決有關(guān)單調(diào)性和最值問(wèn)題,導(dǎo)數(shù)是非常方便而且重要的工具.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y為正實(shí)數(shù),且2x+3y=1,則
1
x
+
1
y
的最小值為
5+2
6
5+2
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y為正實(shí)數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y為正實(shí)數(shù),且滿足4x+3y=12,則xy的最大值為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x,y為正實(shí)數(shù),且2x+y=1,則
2
x
+
1
y
的最小值是
9
9

查看答案和解析>>

同步練習(xí)冊(cè)答案