14.計(jì)算:
(1)(2$\frac{1}{4}$)${\;}^{\frac{1}{2}}$-(-9.6)0-(3$\frac{3}{8}$)${\;}^{-\frac{2}{3}}$+(1.5)-2
(2)log49×log278+2log122-log12$\frac{1}{3}$+eln2

分析 (1)根據(jù)指數(shù)冪運(yùn)算性質(zhì)計(jì)算即可
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)和換底公式計(jì)算即可

解答 解:(1)原式=$(\frac{3}{2})^{2×\frac{1}{2}}$-1-$(\frac{3}{2})^{3×(-\frac{2}{3})}$+$(\frac{3}{2})^{-2}$=$\frac{3}{2}$-1-$\frac{4}{9}$+$\frac{4}{9}$=$\frac{1}{2}$,
(2)原式=$\frac{2lg3}{2lg2}×\frac{3lg2}{3lg3}$+log12[4÷($\frac{1}{3}$)]+2=1+1+2=4.

點(diǎn)評(píng) 本題考查了指數(shù)冪和對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x3-x及其圖象曲線C
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間及在(1,f(1))處的切線與曲線C的另一交點(diǎn)的橫坐標(biāo)
(2)證明:若對(duì)于任意非零實(shí)數(shù)x1,曲線C與其點(diǎn)P1(x1,f(x1))處的切線交于另一點(diǎn)P2(x2,f(x2)),曲線C與其在點(diǎn)P2(x2,f(x2))處的切線交于另一點(diǎn)P3(x3,f(x3)),線段P1P2,P2P3與曲線C所圍成封閉圖形的面積分別記為S1、S2,則$\frac{S_1}{S_2}$為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱臺(tái)ABC-A1B1C1中,CC1⊥平面ABC,AB=2A1B1=2CC1,M,N分別為AC,BC的中點(diǎn).
(1)求證:AB1∥平面C1MN;
(2)若AB⊥BC且AB=BC,求二面角C-MC1-N的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知正項(xiàng)數(shù)列{an}中前n項(xiàng)和為Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),求Sn及an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知定義在R上的偶函數(shù)f(x)在(-∞,0]單調(diào)遞減,且f(-$\frac{1}{3}$)=0,則滿足f(log${\;}_{\frac{1}{8}}$x)+f(log8x)>0的x的取值范圍是( 。
A.(0,+∞)B.(0,$\frac{1}{2}$)∪(2,+∞)C.(0,$\frac{1}{8}$)∪($\frac{1}{2}$,2)D.(0,$\frac{1}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{{e}^{x}}{{x}^{2}-mx+1}$
(1)若m∈(-2,2),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(2)若m∈(0,$\frac{1}{2}$],則當(dāng)x∈[0,m+1]時(shí),函數(shù)y=f(x)的圖象是否總在直線y=x上方,請(qǐng)寫出判斷過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.兩平行直線x+2y-1=0與2x+4y+3=0間的距離為(  )
A.$\frac{2}{5}\sqrt{5}$B.$\frac{{\sqrt{5}}}{2}$C.$\frac{4}{5}\sqrt{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列所給問題中,不可以設(shè)計(jì)一個(gè)算法求解的是(  )
A.求1+2+3+…+10的和B.解方程組$\left\{\begin{array}{l}{x+y+5=0}\\{x-y+3=0}\end{array}\right.$
C.求半徑為3的圓的面積D.判斷y=x2在R上的單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.若函數(shù)f(x)對(duì)于定義域內(nèi)的任意x都滿足$f(x)=f(\frac{1}{x})$,則稱f(x)具有性質(zhì)M.
(1)很明顯,函數(shù)$f(x)=x+\frac{1}{x}$(x∈(0,+∞)具有性質(zhì)M;請(qǐng)證明$f(x)=x+\frac{1}{x}$(x∈(0,+∞)在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù).
(2)已知函數(shù)g(x)=|lnx|,點(diǎn)A(1,0),直線y=t(t>0)與g(x)的圖象相交于B、C兩點(diǎn)(B在左邊),驗(yàn)證函數(shù)g(x)具有性質(zhì)M并證明|AB|<|AC|.
(3)已知函數(shù)$h(x)=|x-\frac{1}{x}|$,是否存在正數(shù)m,n,k,當(dāng)h(x)的定義域?yàn)閇m,n]時(shí),其值域?yàn)閇km,kn],若存在,求k的范圍,若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案