(07年天津卷文)(14分)

設(shè)函數(shù)),其中

(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時,求函數(shù)的極大值和極小值;

(Ⅲ)當(dāng)時,證明存在,使得不等式對任意的恒成立.

本小題主要考查運(yùn)用導(dǎo)數(shù)研究函數(shù)的性質(zhì)、曲線的切線方程,函數(shù)的極值、解不等式等基礎(chǔ)知識,考查綜合分析和解決問題的能力及分類討論的思想方法.

解析:(Ⅰ)當(dāng)時,,得,且

,

所以,曲線在點(diǎn)處的切線方程是,整理得

(Ⅱ)

,解得

由于,以下分兩種情況討論.

(1)若,當(dāng)變化時,的正負(fù)如下表:

因此,函數(shù)處取得極小值,且

函數(shù)處取得極大值,且

(2)若,當(dāng)變化時,的正負(fù)如下表:

因此,函數(shù)處取得極小值,且

;

函數(shù)處取得極大值,且

(Ⅲ)證明:由,得,當(dāng)時,

,

由(Ⅱ)知,上是減函數(shù),要使,

只要

       、

設(shè),則函數(shù)上的最大值為

要使①式恒成立,必須,即

所以,在區(qū)間上存在,使得對任意的恒成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(07年天津卷文)設(shè),,則(    )

A.              B.               C.                     D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年天津卷文)設(shè)函數(shù),則(    )

A.在區(qū)間上是增函數(shù)                    B.在區(qū)間上是減函數(shù)

C.在區(qū)間上是增函數(shù)                        D.在區(qū)間上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年天津卷文)設(shè)是定義在上的奇函數(shù),且當(dāng)時,,若對任意的,不等式恒成立,則實(shí)數(shù)的取值范圍是(    )

A.            B.         C.             D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(07年天津卷文)(14分)

設(shè)橢圓的左、右焦點(diǎn)分別為是橢圓上的一點(diǎn),,原點(diǎn)到直線的距離為

(Ⅰ)證明;

(Ⅱ)求使得下述命題成立:設(shè)圓上任意點(diǎn)處的切線交橢圓于,兩點(diǎn),則

查看答案和解析>>

同步練習(xí)冊答案