分析:(1)依題意點P
n的坐標為(x
n,y
n+1),然后根據(jù)y
n+1=
4xn+n=
4xn+1可得x
n+1=x
n+n,然后根據(jù)累加法可求出數(shù)列{x
n}的通項公式;
(2)先判定S
1,S
2,S
3是否滿足條件,然后利用放縮法可知當n>3時,S
n=
+
+
+…+
<
+
+
+
+…+
,然后利用等比數(shù)列求和可證得結論;
(3)根據(jù)d
n=
可知d
n+1<
dn,T
2n-1=d
1+d
2+…+d
2n-1≤
+
()2+…+
()2n-1=
×[1-
()2n-1],當n≥2,k=1,2,…,2n-1時,有d
k+d
2n-k≥
×
=2d
n,從而T
2n-1≥
×(2n-1)×2d
n=(2n-1)×d
n,從而證得結論.
解答:解:(1)依題意點P
n的坐標為(x
n,y
n+1),
∴y
n+1=
4xn+n=
4xn+1,∴x
n+1=x
n+n,(2分)
∴x
n=x
n-1+n-1=x
n-2+(n-2)+(n-1)=…=x
1+1+2+…+(n-1)=
+1;(4分)
(2)∵c
n=
,由S
1=1<
,S
2=1+
=
<
,S
3=1+
+
=
<
,
∴當n>3時,S
n=
+
+
+…+
<
+
+
+
+…+
=1+
+
×
=
+
-
<
+
-
=
(8分)
(3)∵d
n=
,所以易證:d
n+1<
dn,
∴當n≥2時,d
n<
dn-1<
() 2dn-2<…<
()n-1d1=
()n,
∴T
2n-1=d
1+d
2+…+d
2n-1≤
+
()2+…+
()2n-1=
×[1-
()2n-1],(當n=1時取“=”)(11分)
另一方面,當n≥2,k=1,2,…,2n-1時,有:
d
k+d
2n-k=
×[
]≥
×2
=
=
,
又∵4
k+4
2n-k≥2×4
n,∴4
2n-4
k-4
2n-k+1≤4
2n-2×4
n+1=(4
n-1)
2,
∴d
k+d
2n-k≥
×
=2d
n,
T
2n-1≥
×(2n-1)×2d
n=(2n-1)×d
n.
所以對任意的n∈N
*,都有:(2n-1)•d
n≤T
2n-1≤
×[1-
()2n-1](14分)
點評:本題主要考查了數(shù)列與不等式的綜合,以及放縮法的運用和等比數(shù)列求和,同時考查了計算能力,屬于難題.