函數(shù)f(x)=sin(ωx+φ)的圖象如圖所示,其中ω>0,|φ|<
π
2
,則為了得到函數(shù)g(x)=sin2x的圖象,只須把函數(shù)f(x)的圖象( 。
A、向右平移
π
6
個(gè)單位
B、向右平移
π
12
個(gè)單位
C、向左平移
π
6
個(gè)單位
D、向左平移
π
12
個(gè)單位
考點(diǎn):函數(shù)y=Asin(ωx+φ)的圖象變換,由y=Asin(ωx+φ)的部分圖象確定其解析式
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:首先利用函數(shù)的圖象確定函數(shù)的解析式,進(jìn)一步利用函數(shù)的圖象變換求得結(jié)果.
解答: 解:利用函數(shù)的圖象:T=4(
12
-
π
3
)=π

所以:ω=2
當(dāng)x=
π
3
時(shí),f(
π
3
)=0,(其中ω>0,|φ|<
π
2

解得:φ=
π
3

所以:f(x)=sin(2x+
π
3

所以要得到函數(shù)g(x)=sin2x的圖象只需將函數(shù)f(x)的圖象向右平移
π
6
個(gè)單位即可.
故選:A
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):根據(jù)函數(shù)的圖象確定函數(shù)的解析式,函數(shù)的圖象的變換問(wèn)題,屬于基礎(chǔ)題型.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,等邊△ABC的邊長(zhǎng)為a,將它沿平行于BC的線段PQ折起,使平面A′PQ⊥平面BPQC,若折疊后A′B的長(zhǎng)為d,則d的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)以下算法的程序,畫(huà)出其相應(yīng)的流程圖,并指明該算法的目的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓:
x2
3
+y2=1,過(guò)坐標(biāo)原點(diǎn)O作兩條互相垂直的射線,與橢圓分別交于A、B兩點(diǎn).
(Ⅰ)求證O到直線AB的距離為定值;
(Ⅱ)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式(x-1)(x-2)(x-3)>0的解集是(  )
A、(1,2)
B、(1,2)∪(3,+∞)
C、(1,3)
D、(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若函數(shù)y=mx2-6x+2的圖象與x軸只有一個(gè)公共點(diǎn),求m的值;
(2)若方程4(x2-3x)+k-3=0沒(méi)有實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知正三角形OEF的三個(gè)頂點(diǎn)(O為坐標(biāo)原點(diǎn))都在拋物線上x(chóng)2=y,圓D為三角形OEF的外接圓.圓C的方程為(x-5cosα)2+(y-5sinα-2)2=1(a∈R),過(guò)圓C上任意一點(diǎn)M作圓D的兩條切線MA,MB,切點(diǎn)分別為A,B,設(shè)d=|MA|.
(Ⅰ)求圓D的方程;
(Ⅱ)試用d表示
MA
MB
,并求
MA
MB
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=20.1,b=ln0.1,c=sin1,則( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求證:函數(shù)f(x)=x2+|x+a|+1是偶函數(shù)的充要條件是a=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案