定義在R上的函數(shù)y=f(x),f(0)≠0,當(dāng)x>0時(shí),f(x)>1,且對(duì)任意的a、b∈R,有f(a+b)=f(a)f(b),
(1)求證:f(0)=1;
(2)求證:對(duì)任意的x∈R,恒有f(x)>0;
(3)已知f(x)是R上的增函數(shù),若f(x)•f(2x-x2)>1,求x的取值范圍.
分析:(1)令a=b=0,可由f(a+b)=f(a)f(b),求出f(0)=1;
(2)令a=x,b=-x,結(jié)合(1)中結(jié)論可得f(x)與f(-x)互為倒數(shù),進(jìn)而由已知可證得對(duì)任意的x∈R,恒有f(x)>0;
(3)根據(jù)(1)中結(jié)論,由已知將不等式f(x)•f(2x-x2)>1,化為3x-x2>0,易解得答案.
解答:解:(1)令a=b=0,則f(0)=[f(0)]2
∵f(0)≠0
∴f(0)=1
(2)令a=x,b=-x,則 f(0)=f(x)f(-x)
∴f(-x)=
1
f(x)

由已知x>0時(shí),f(x)>1>0,
當(dāng)x<0時(shí),-x>0,f(-x)>0
∴f(x)=
1
f(-x)
>0
又x=0時(shí),f(0)=1>0
∴對(duì)任意x∈R,f(x)>0
(3)f(x)•f(2x-x2)=f[x+(2x-x2)]=f(-x2+3x)
又1=f(0),f(x)在R上遞增
∴由f(3x-x2)>f(0)
得:3x-x2>0
∴0<x<3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是抽象函數(shù)及其應(yīng)用,函數(shù)單調(diào)性的性質(zhì),函數(shù)恒成立問題,熟練掌握抽象函數(shù)“湊已知,湊未知”的解答技巧是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)x∈[-1,1]時(shí),f(x)=x3,則f(2009)的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

13、定義在R上的函數(shù)y=f(x)滿足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,則f(508)=
0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,則有( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列四個(gè)命題:
①“a>b”是“2a>2b”成立的充要條件;
②“a=b”是“l(fā)ga=lgb”成立的充分不必要條件;
③函數(shù)f(x)=ax2+bx(x∈R)為奇函數(shù)的充要條件是“a=0”
④定義在R上的函數(shù)y=f(x)是偶函數(shù)的必要條件是
f(-x)f(x)
=1”

其中真命題的序號(hào)是
①③
①③
.(把真命題的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)y=f(x)滿足f(-x)=-f(x),f(1+x)=f(1-x),當(dāng)x∈[-1,1]時(shí),f(x)=x3,則f(2011)=
-1
-1

查看答案和解析>>

同步練習(xí)冊(cè)答案