20.已知二次函數(shù)的頂點(diǎn)的縱坐標(biāo)為1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在區(qū)間上[2a,a+1]上不單調(diào),求a的取值范圍.

分析 (1)設(shè)f(x)=a(x-h)2+1,由于f(0)=f(2)=3,可得$\left\{\begin{array}{l}{a{h}^{2}+1=3}\\{a(2-h)^{2}+1=3}\end{array}\right.$,解得a,h即可得出.
(2)由(1)可知:函數(shù)f(x)的對(duì)稱軸為x=1,由于f(x)在區(qū)間上[2a,a+1]上不單調(diào),可得2a<1<a+1,解出即可得出.

解答 解:(1)設(shè)f(x)=a(x-h)2+1,∵f(0)=f(2)=3,
∴$\left\{\begin{array}{l}{a{h}^{2}+1=3}\\{a(2-h)^{2}+1=3}\end{array}\right.$,解得a=2,h=1.
∴f(x)=2(x-1)2+1=2x2-4x+3.
(2)由(1)可知:函數(shù)f(x)的對(duì)稱軸為x=1,
∵f(x)在區(qū)間上[2a,a+1]上不單調(diào),
∴2a<1<a+1,
解得$0<a<\frac{1}{2}$.
∴a的取值范圍是$(0,\frac{1}{2})$.

點(diǎn)評(píng) 本題考查了二次函數(shù)的圖象與性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)f(x)是定義在R上的偶函數(shù),滿足:①f(x+2)=f(x);②當(dāng)x∈[0,1]時(shí),f(x)=$\sqrt{2}$x,若P1,P2,…,P2016是f(x)在x∈[3,4]圖象上不同的2016個(gè)點(diǎn),設(shè)A(-1,0),B(1,$\sqrt{2}$),mi=$\overrightarrow{AB}$•$\overrightarrow{A{P}_{i}}$(i=1,2,…,2016),則m1+m2+…+m2016=20160.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.如圖,已知四棱錐P-ABCD的底面為矩形,PA⊥底面ABCD,且PA=AD=1,AB=$\sqrt{2}$,點(diǎn)E,F(xiàn)分別為AB、PC中點(diǎn).
(1)求證:EF⊥PD;
(2)求點(diǎn)E到平面PDC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知R是實(shí)數(shù)集,集合P={m∈R|mx2+4mx-4<0對(duì)?x∈R都成立},Q={x|y=ln(x2+2x)},則(∁RP)∩(∁RQ)=(  )
A.{x|-2≤x≤-1}B.{x|-2≤x≤-1或x=0}C.{x|-2≤x<-1}D.{x|-2≤x<-1或x=0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.在一次射擊訓(xùn)練中,某戰(zhàn)士連續(xù)射擊了兩次.設(shè)命題p是“第一次射擊擊中目標(biāo)”,q是“第二次射擊擊中目標(biāo)”.則命題“兩次都沒有擊中目標(biāo)”用p,q及邏輯聯(lián)結(jié)詞可以表示為¬p∧¬q.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}(a-3)x+2,x≤1\\{x^{1-a}},x>1\end{array}\right.$是(-∞,+∞)上的減函數(shù),那么a的取值范圍是(  )
A.(1,3)B.(1,2]C.[2,3)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.若函數(shù)f(x)=$\left\{\begin{array}{l}{1,(x∈Q)}\\{0,(x∈{∁}_{R}Q)}\end{array}\right.$,則f(e)=( 。ㄆ渲衑是自然對(duì)數(shù)的底數(shù))
A.0B.1C.0或1D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.等差數(shù)列{an}中,a3=2,a11=2a5
(I)求{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=$\frac{1}{n{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知定義在R上的函數(shù)f(x)的圖象如圖,則x•f′(x)>0的解集為( 。
A.(-∞,0)∪(1,2)B.(1,2)C.(-∞,1)D.(-∞,1)∪(2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案