【題目】有6個座位連成一排現(xiàn)有3人就坐,則恰有兩個空位相鄰的概率為( )
A. B. C. D. 以上都不對
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,點為左焦點,過點作軸的垂線交橢圓于、兩點,且.
(1)求橢圓的方程;
(2)若是橢圓上異于點的兩點,且直線的傾斜角互補(bǔ),則直線的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)若方程在區(qū)間(0,+)上有實數(shù)解,求實數(shù)a的取值范圍;
(3)若存在實數(shù),且,使得,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某帆船中心比賽場館區(qū)的海面上每天海浪高度y(米)可看作時間(單位:小時)的函數(shù),記作,經(jīng)過長期觀測,的曲線可近似地看成是函數(shù),下列是某日各時的浪高數(shù)據(jù).
t/小時 | 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
y/米 | 1 | 1 | 1 | 1 |
(1)根據(jù)以上數(shù)據(jù),求出的解析式;
(2)為保證安全比賽時的浪高不能高于米,則在一天中的哪些時間可以進(jìn)行比賽.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線:(為參數(shù))和圓的極坐標(biāo)方程:.
(1)分別求直線和圓的普通方程并判斷直線與圓的位置關(guān)系;
(2)已知點,若直線與圓相交于,兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,己知、是橢圓的左、右焦點,直線經(jīng)過左焦點,且與 橢圓交兩點,的周長為.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)是否存在直線,使得為等腰直角三角形?若存在,求出直線的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,橢圓E: (a>b>0)的離心率為,焦距為2.
(1)求橢圓E的方程;
(2)如圖,動直線l:y=k1x-交橢圓E于A,B兩點,C是橢圓E上一點,直線OC的斜率為k2,且k1k2=.M是線段OC延長線上一點,且|MC|∶|AB|=2∶3,⊙M的半徑為|MC|,OS,OT是⊙M的兩條切線,切點分別為S,T.求∠SOT的最大值,并求取得最大值時直線l的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點A(x1,f(x1)),B(x2,f(x2))是函數(shù)f(x)=2sin(ωx+φ)圖象上的任意兩點,且角φ的終邊經(jīng)過點,若|f(x1)﹣f(x2)|=4時,|x1﹣x2|的最小值為.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(3)當(dāng)時,不等式mf(x)+2m≥f(x)恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com