設(shè)f(x)=|x-a|+1,a∈R,則
A.存在a,使f(x)是偶函數(shù),也存在a,使f(x)是奇函數(shù)
B.存在a,使f(x)是偶函數(shù),但不存在a,使f(x)是奇函數(shù)
C.不存在a,使f(x)是偶函數(shù),但存在a,使f(x)是奇函數(shù)
D.不存在a,使f(x)是偶函數(shù),也不存在a,使f(x)是奇函數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:全優(yōu)設(shè)計(jì)選修數(shù)學(xué)-2-2蘇教版 蘇教版 題型:013
設(shè)f(x)=x(ax2+bx+c)(a≠0)在x=1和x=-1處均有極值,則下列點(diǎn)一定在x軸上的是
A.(a,b)
B.(a,c)
C.(b,c)
D.(a+b,c)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:天津一中2008-2009年高三年級(jí)三月考數(shù)學(xué)試卷(理) 題型:044
已知f(x)=(x∈R),在區(qū)間[-1,1]上是增函數(shù).
(1)求實(shí)數(shù)a的值組成的集合A;
(2)設(shè)關(guān)于x的方程f(x)=的兩個(gè)非零實(shí)根為x1、x2,試問(wèn):是否存在實(shí)數(shù)m,使得不等式m2+tm+1≥|x1-x2|對(duì)任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:浙江省杭州市2010屆高三科目教學(xué)質(zhì)量檢測(cè)數(shù)學(xué)理科試題 題型:044
設(shè)f(x)=λ1(x2+x)+λ2x·3x(a,b∈R,a>0)
(1)當(dāng)λ1=1,λ2=0時(shí),設(shè)x1,x2是f(x)的兩個(gè)極值點(diǎn),
①如果x1<1<x2<2,求證:(-1)>3;
②如果a≥2,且x2-x1=2且x∈(x1,x2)時(shí),函數(shù)g(x)=(x)+2(x-x2)的最小值為h(a),求h(a)的最大值.
(2)當(dāng)λ1=0,λ2=1時(shí),
①求函數(shù)y=f(x)-3(ln3+1)x的最小值.
②對(duì)于任意的實(shí)數(shù)a,b,c,當(dāng)a+b+c=3時(shí),求證3aa+3bb+3cc≥9
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:上海市奉賢區(qū)2011屆高三12月調(diào)研測(cè)試數(shù)學(xué)文科試題 題型:044
設(shè)h(x)=x+,x∈[,5],其中m是不等于零的常數(shù),
(1)m=1時(shí),直接寫(xiě)出h(x)的值域
(2)求h(x)的單調(diào)遞增區(qū)間;
(3)已知函數(shù)f(x)(x∈[a,b]),定義:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函數(shù)f(x)在D上的最小值,max{f(x)|x∈D}表示函數(shù)f(x)在D上的最大值.例如:f(x)=cosx,x∈[0,π],則f1(x)=cosx,x∈[0,π],f2(x)=1,x∈[0,π],當(dāng)m=1時(shí),|h1(x)-h(huán)2(x)|≤n恒成立,求n的取值范圍;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com