【題目】已知函數(shù)f(x)=x2+(m+2)x+(2m+5)(m≠0)的兩個(gè)零點(diǎn)分別在區(qū)間(﹣1,0)和區(qū)間(1,2)內(nèi),則實(shí)數(shù)m的取值范圍是

【答案】﹣ <m<﹣
【解析】解:由f(x)=x2+(m+2)x+(2m+5)(m≠0)的圖像開(kāi)口向上,兩個(gè)零點(diǎn)分別在區(qū)間(﹣1,0)和區(qū)間(1,2)內(nèi),則 解不等式可得﹣ <m<﹣
所以答案是:﹣ <m<﹣
【考點(diǎn)精析】利用二次函數(shù)的性質(zhì)和函數(shù)的零點(diǎn)與方程根的關(guān)系對(duì)題目進(jìn)行判斷即可得到答案,需要熟知當(dāng)時(shí),拋物線開(kāi)口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開(kāi)口向下,函數(shù)在上遞增,在上遞減;二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無(wú)實(shí)根,二次函數(shù)的圖象與 軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有三個(gè)游戲規(guī)則如表,袋子中分別裝有形狀、大小相同的球,從袋中無(wú)放回地取球,

游戲1

游戲2

游戲3

袋中裝有3個(gè)黑球和2個(gè)白球

袋中裝有2個(gè)黑球和2個(gè)白球

袋中裝有3個(gè)黑球和1個(gè)白球

從袋中取出2個(gè)球

從袋中取出2個(gè)球

從袋中取出2個(gè)球

若取出的兩個(gè)球同色,則甲勝

若取出的兩個(gè)球同色,則甲勝

若取出的兩個(gè)球同色,則甲勝

若取出的兩個(gè)球不同色,則乙勝

若取出的兩個(gè)球不同色,則乙勝

若取出的兩個(gè)球不同色,則乙勝

問(wèn)其中不公平的游戲是(
A.游戲2
B.游戲3
C.游戲1和游戲2
D.游戲1和游戲3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義域?yàn)镽的奇函數(shù)f(x)= ,其中h(x)是指數(shù)函數(shù),且h(2)=4.
(1)求函數(shù)f(x)的解析式;
(2)求不等式f(2x﹣1)>f(x+1)的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解某社區(qū)居民的家庭年收入與年支出的關(guān)系,相關(guān)部門隨機(jī)調(diào)查了該社區(qū)5戶家庭,得到如表統(tǒng)計(jì)數(shù)據(jù)表:

收入x(萬(wàn)元)

8.2

8.6

10.0

11.3

11.9

支出y(萬(wàn)元)

6.2

7.5

8.0

8.5

9.8


(1)根據(jù)上表可得回歸直線方程 = x+ ,其中 =0.76, = ,據(jù)此估計(jì),該社區(qū)一戶年收入為15萬(wàn)元的家庭年支出為多少?
(2)若從這5個(gè)家庭中隨機(jī)抽選2個(gè)家庭進(jìn)行訪談,求抽到家庭的年收入恰好一個(gè)不超過(guò)10萬(wàn)元,另一個(gè)超過(guò)11萬(wàn)元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】張先生知道清晨從甲地到乙地有好、中、差三個(gè)班次的客車.但不知道具體誰(shuí)先誰(shuí)后.他打算:第一輛看后一定不坐,若第二輛比第一輛舒服,則乘第二輛;否則坐第三輛.問(wèn)張先生坐到好車的概率和坐到差車的概率分別是(
A. 、
B.
C. 、
D. 、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(sinθ,﹣2)與 =(1,cosθ)互相垂直,其中θ∈(0, ).
(Ⅰ)求sinθ和cosθ的值;
(Ⅱ)若sin(θ﹣φ)= ,0<φ< ,求cosφ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,g(x)=f(x)﹣a
(1)當(dāng)a=2時(shí),求函數(shù)g(x)的零點(diǎn);
(2)若函數(shù)g(x)有四個(gè)零點(diǎn),求a的取值范圍;
(3)在(2)的條件下,記g(x)得四個(gè)零點(diǎn)分別為x1 , x2 , x3 , x4 , 求x1+x2+x3+x4的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量 =(cos ,sin ), =(cos ,﹣sin ),且x∈[ ,π].
(1)求 及| + |;
(2)求函數(shù)f(x)= +| + |的最大值,并求使函數(shù)取得最大值時(shí)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】袋中有質(zhì)地、大小完全相同的5個(gè)小球,編號(hào)分別為1,2,3,4,5,甲、乙兩人玩一種游戲.甲先摸出一個(gè)球.記下編號(hào),放回后再摸出一個(gè)球,記下編號(hào),如果兩個(gè)編號(hào)之和為偶數(shù).則算甲贏,否則算乙贏.
(1)求甲贏且編號(hào)之和為6的事件發(fā)生的概率:
(2)試問(wèn):這種游戲規(guī)則公平嗎.請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案