【題目】如圖,已知平面ABCD,四邊形ABEF為矩形,四邊形ABCD為直角梯形,,,,.
(1)求證:平面BCE;
(2)求證:平面BCE;
(3)求三棱錐的體積.
【答案】(1)詳見(jiàn)解析(2)詳見(jiàn)解析(3)
【解析】
試題分析:(1)證明線面平行,一般利用線面平行判定定理,即從線線平行出發(fā)給予證明,而線線平行,一般從平幾條件尋找或證明,本題利用矩形性質(zhì)得到,注意運(yùn)用線面平行判定定理時(shí),要寫(xiě)全定理?xiàng)l件,尤其線在面外這個(gè)條件(2)證明線面垂直,一般多次利用線面垂直判定及性質(zhì)定理進(jìn)行論證,本題由平面ABCD,,可得;在直角梯形ABCD中,利用平幾條件可計(jì)算出,這樣就可由定理證明結(jié)論(3)先調(diào)整頂點(diǎn),轉(zhuǎn)化為易求高的三棱錐:,再利用線面垂直判定及性質(zhì)定理證明AB上高線CM為所求高,最后代入三棱錐體積公式求值.
試題解析:(1)因?yàn)樗倪呅蜛BEF為矩形,所以.
又平面BCE,平面BCE.
所以平面BCE.
(2)過(guò)C作,垂足為M,因?yàn)?/span>,所以四邊形ADCM為矩形,
∴,又,,∴,,,
∴,∴.
∵平面ABCD,,∴平面ABCD,∴.
又平面BCE,,∴平面BCE.
(3)∵平面ABCD,∴.
又,平面ABEF,平面ABEF,,
∴平面ABEF.
故.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中.
(I)若a=1,求在區(qū)間[0,3]上的最大值和最小值;
(II)解關(guān)于x的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】大西洋鮭魚(yú)每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,經(jīng)研究發(fā)現(xiàn)鮭魚(yú)的游速可以表示為函數(shù)y=log3(),單位是m/s,θ是表示魚(yú)的耗氧量的單位數(shù).
(1)當(dāng)一條鮭魚(yú)的耗氧量是900個(gè)單位時(shí),它的游速是多少?
(2)計(jì)算一條魚(yú)靜止時(shí)耗氧量的單位數(shù)。
(3)某條鮭魚(yú)想把游速提高1 m/s,那么它的耗氧量的單位數(shù)是原來(lái)的多少倍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位建造一間地面面積為12的背面靠墻的矩形小房,由于地理位置的限制,房子側(cè)面的長(zhǎng)度不得超過(guò)米,房屋正面的造價(jià)為400元/,房屋側(cè)面的造價(jià)為150元/,屋頂和地面的造價(jià)費(fèi)用合計(jì)為5800元,如果墻高為3,且不計(jì)房屋背面的費(fèi)用.
(1)把房屋總價(jià)表示成的函數(shù),并寫(xiě)出該函數(shù)的定義域;
(2)當(dāng)側(cè)面的長(zhǎng)度為多少時(shí),總造價(jià)最低?最低總造價(jià)是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(>0, ≠1, ≠﹣1),是定義在(﹣1,1)上的奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)當(dāng)=1時(shí),判斷函數(shù)在(﹣1,1)上的單調(diào)性,并給出證明;
(3)若且,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于在區(qū)間上有意義的函數(shù),滿(mǎn)足對(duì)任意的,,有恒成立,厄稱(chēng)在上是“友好”的,否則就稱(chēng)在上是“不友好”的,現(xiàn)有函數(shù).
(1)若函數(shù)在區(qū)間()上是“友好”的,求實(shí)數(shù)的取值范圍;
(2)若關(guān)于的方程的解集中有且只有一個(gè)元素,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在半徑為,圓心角為的扇形金屬材料中剪出一個(gè)長(zhǎng)方形,并且與的平分線平行,設(shè).
(1)試將長(zhǎng)方形的面積表示為的函數(shù);
(2)若將長(zhǎng)方形彎曲,使和重合焊接制成圓柱的側(cè)面,當(dāng)圓柱側(cè)面積最大時(shí),求圓柱的體積(假設(shè)圓柱有上下底面);為了節(jié)省材料,想從△中直接剪出一個(gè)圓面作為圓柱的一個(gè)底面,請(qǐng)問(wèn)是否可行?并說(shuō)明理由.
(參考公式:圓柱體積公式.其中是圓柱底面面積,是圓柱的高;等邊三角形內(nèi)切圓半徑.其中是邊長(zhǎng))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在每年的春節(jié)后,某市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹(shù)綠化活動(dòng)中去.林業(yè)管理部門(mén)在植樹(shù)前,為了保證樹(shù)苗的質(zhì)量,都會(huì)在植樹(shù)前對(duì)樹(shù)苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩種樹(shù)苗中各抽測(cè)了10株樹(shù)苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫(huà)出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩種樹(shù)苗的高度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹(shù)苗高度平均值為,將這10株樹(shù)苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問(wèn)輸出的S大小為多少?并說(shuō)明S的統(tǒng)計(jì)學(xué)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】班上有四位同學(xué)申請(qǐng)A,B,C三所大學(xué)的自主招生,若每位同學(xué)只能申請(qǐng)其中一所大學(xué),且申請(qǐng)其中任何一所大學(xué)是等可能的.
(1)求恰有2人申請(qǐng)A大學(xué)或B大學(xué)的概率;
(2)求申請(qǐng)C大學(xué)的人數(shù)X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com