2.設(shè)f(x)=asin(πx+α)+bcos(πx+β)+4 (a、b、α、β為常數(shù)),且f(2000)=5,那么f(2009)等于( 。
A.1B.3C.5D.7

分析 由已知利用誘導(dǎo)公式推導(dǎo)出asinα+bsinβ=1,由此能求出f(2009).

解答 解:∵f(x)=asin(πx+α)+bcos(πx+β)+4 (a、b、α、β為常數(shù)),且f(2000)=5,
∴f(2000)=asin(2000π+α)+bcos(2000π+β)+4=asinα+bsinβ+4=5,
∴asinα+bsinβ=1,
∴f(2009)=asin(2009π+α)+bcos(2009π+β)+4
=-asinα-bcosβ+4
=-1+4=3.
故選:B.

點(diǎn)評 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)、誘導(dǎo)公式的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,且|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow$等于(  )
A.$2\sqrt{3}$B.3C.$\sqrt{6}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某大型超市規(guī)定購買商品每滿100元可以領(lǐng)到一張獎(jiǎng)券,每滿200元可以領(lǐng)到2張獎(jiǎng)券,以次類推,抽獎(jiǎng)方法是:甲箱子里裝有1個(gè)紅球、2個(gè)白球,乙箱子里裝有3個(gè)紅球、2個(gè)白球,這些球除顏色外完全相同,每次抽獎(jiǎng)從這兩個(gè)箱子里各隨機(jī)摸出2個(gè)球,若摸出的紅球不少于2個(gè),則獲獎(jiǎng)(每次抽獎(jiǎng)結(jié)束后將球放回原箱),甲顧客從該超市購買了200元的商品.
(Ⅰ)求在1次抽獎(jiǎng)中獲獎(jiǎng)的概率;
(Ⅱ)求甲顧客獲獎(jiǎng)次數(shù)X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.有下列敘述;
①若f(x)=|x-1|+|x+a|為區(qū)間[-3,b]上的偶函數(shù),則a+b=4;
②若關(guān)于x的方程x2-(2k+1)x+k2=0有兩個(gè)大于1的實(shí)數(shù)根,則k的取值范圍為(2,+∞);
③已知函數(shù)f(x)=x|x|,若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是[$\sqrt{2}$,+∞);
④已知A和B是單位圓O上的兩點(diǎn),∠AOB=$\frac{2}{3}$π,點(diǎn)C在劣弧$\widehat{AB}$上,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,則x+y的最大值是2.
其中正確敘述的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.正四棱錐的底面邊長為12cm,側(cè)棱長為10cm,求此正四棱錐的高和斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左、右焦點(diǎn)分別是F1,F(xiàn)2,過F2作傾斜角為120°的直線與橢圓的一個(gè)交點(diǎn)為M,若MF1垂直于MF2,則橢圓的離心率為$\sqrt{3}-1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a、b∈R,命題:若ab≠0,則a≠0且b≠0的逆否命題是若a=0或b=0,則ab=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.有以下四個(gè)命題:①若$\frac{1}{x}=\frac{1}{y}$,則x=y.②若lgx有意義,則x>0.③若x=y,則$\sqrt{x}=\sqrt{y}$.④若x<y,則 x2<y2.則是真命題的序號為( 。
A.①②B.①③C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=x+$\frac{a}{x}$+lnx,(a∈R),
(Ⅰ)當(dāng)a=2時(shí),求 f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a≥2時(shí),存在兩點(diǎn)(x1,f(x1)),(x2,f(x2)),使得曲線y=f(x)在這兩點(diǎn)處的切線互相平行,求證x1+x2>8.

查看答案和解析>>

同步練習(xí)冊答案