【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù).f(t),隨時刻t(時)變化的規(guī)律滿足表達式,其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)令,求x的取值范圍;
(2)若規(guī)定每天中f(t)的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)a的取值范圍.
【答案】(1)[0,1];(2).
【解析】
(1)題根據(jù)t的取值范圍,及復(fù)合函數(shù)同增的單調(diào)性可得x的取值范圍;
(2)題根據(jù)第(1)題的提示構(gòu)造一個函數(shù)h(x)=|x-a|+3a+2,然后將絕對值函數(shù)轉(zhuǎn)化成分段函數(shù),考慮單調(diào)性及最大值的取值,再與5比較,即可得到調(diào)節(jié)參數(shù)a的取值范圍.
(1)由題意,0≤t≤24,則1≤t+1≤10,
∴0=lg1≤lg(t+1)≤lg10=1.
故x的取值范圍為:[0,1].
(2)由(1),知:
可設(shè)
則.
根據(jù)一次函數(shù)的單調(diào)性,很明顯h(x)在[0,a)上單調(diào)遞減,在[a,1]上單調(diào)遞增.
∴用表示函數(shù)的最大值是中最大的值.
∵,
∴,即,
解得0<a≤.
∴a的取值范圍為:(0,].
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以表示值域為的函數(shù)組成的集合,表示具有如下性質(zhì)的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù),使得函數(shù)的值域包含于區(qū)間。例如,當(dāng),時,,。則下列命題中正確的是:( )
A.設(shè)函數(shù)的定義域為,則“”的充要條件是“,,”
B.函數(shù)的充要條件是有最大值和最小值
C.若函數(shù),的定義域相同,且,,則
D.若函數(shù)有最大值,則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,曲線的參數(shù)方程是(為參數(shù))以原點為極點, 軸正半軸為極軸,并取與直角坐標(biāo)系相同的單位長度,建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.
(1)求曲線, 的直角坐標(biāo)方程;
(2)若、分別是曲線和上的任意點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下圖是改革開放四十周年大型展覽的展館--------國家博物館.現(xiàn)欲測量博物館正門柱樓頂部一點離地面的高度(點在柱樓底部).在地面上的兩點,測得點的仰角分別為,,且,米,則為( )
A. 10米 B. 20米 C. 30米 D. 40米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提升城市道路通行能力,可為市民提供更多出行便利.我校某研究性學(xué)習(xí)小組對成都市一中心路段(限行速度為千米/小時)的擁堵情況進行調(diào)查統(tǒng)計,通過數(shù)據(jù)分析發(fā)現(xiàn):該路段的車流速度(輛/千米)與車流密度(千米/小時)之間存在如下關(guān)系:如果車流密度不超過該路段暢通無阻(車流速度為限行速度);當(dāng)車流密度在時,車流速度是車流密度的一次函數(shù);車流密度一旦達到該路段交通完全癱瘓(車流速度為零).
(1)求關(guān)于的函數(shù)
(2)已知車流量(單位時間內(nèi)通過的車輛數(shù))等于車流密度與車流速度的乘積,求此路段車流量的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著人口老齡化的到來,我國的勞動力人口在不斷減少,“延遲退休”已經(jīng)成為人們越來越關(guān)注的話題,為了解公眾對“延遲退休”的態(tài)度,某校課外研究性學(xué)習(xí)小組在某社區(qū)隨機抽取了50人進行調(diào)查,將調(diào)查情況進行整理后制成下表:
年齡 | [20,25) | [25,30) | [30,35) | [35,40) | [40,45) |
人數(shù) | 4 | 5 | 8 | 5 | 3 |
年齡 | [45,50) | [50,55) | [55,60) | [60,65) | [65,70) |
人數(shù) | 6 | 7 | 3 | 5 | 4 |
經(jīng)調(diào)查年齡在[25,30),[55,60)的被調(diào)查者中贊成“延遲退休”的人數(shù)分別是3人和2人.現(xiàn)從這兩組的被調(diào)查者中各隨機選取2人,進行跟蹤調(diào)查.
(I)求年齡在[25,30)的被調(diào)查者中選取的2人都贊成“延遲退休”的概率;
(II)若選中的4人中,不贊成“延遲退休”的人數(shù)為,求隨機變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某船在處測得燈塔在其南偏東方向上,該船繼續(xù)向正南方向行駛5海里到處,測得燈塔在其北偏東方向上,然后該船向東偏南方向行駛2海里到處,此時船到燈塔的距離為多少海里( )
A.千米B.千米C.6千米D.5千米
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種蔬菜從1月1日起開始上市,通過市場調(diào)查,得到該蔬菜種植成本(單位:元/)與上市時間(單位:10天)的數(shù)據(jù)如下表:
時間 | 5 | 11 | 25 |
種植成本 | 15 | 10.8 | 15 |
(1)根據(jù)上表數(shù)據(jù),從下列函數(shù):,,,中(其中),選取一個合適的函數(shù)模型描述該蔬菜種植成本與上市時間的變化關(guān)系;
(2)利用你選取的函數(shù)模型,求該蔬菜種植成本最低時的上市時間及最低種植成本.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com