8.對某校高一年級學生參加社區(qū)服務次數(shù)進行統(tǒng)計,隨機抽取M名學生作為樣本,得到這M名學生參加社區(qū)服務的次數(shù).根據(jù)此數(shù)據(jù)作出了頻數(shù)與頻率的統(tǒng)計表和頻率分布直方圖:
分組頻數(shù)頻率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合計M1
(1)求出表中M、p、m、n的值;
(2)補全頻率分布直方圖;若該校高一學生有360人,估計他們參加社區(qū)服務的次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù);
(3)在所取樣本中,從參加社區(qū)服務的次數(shù)不少于20次的學生中任選2人,求至多一人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的概率.

分析 (1)根據(jù)$\frac{頻數(shù)}{數(shù)據(jù)總數(shù)}$=頻率及頻率之和等于1,頻數(shù)之和等于數(shù)據(jù)總數(shù),列出方程可求出;
(2)根據(jù)頻率分布直方圖的高度=$\frac{頻率}{組距}$可求出[15,20)組的直方圖高度,作出圖象即可,用高一總?cè)藬?shù)乘該組的頻率即可得到高一學生服務次數(shù)在[15,20)內(nèi)的總?cè)藬?shù);
(3)使用列舉法求出概率.

解答 解:(1)由題可知$\frac{10}{M}=0.25$,$\frac{25}{M}=n$,$\frac{m}{M}=p$,.
又 10+25+m+2=M,解得 M=40,n=0.625,m=3,p=0.075.
(2)由(1)可知,[15,20)組的頻率與組距之比為0.125.則頻率分布直方圖如下:

參加在社區(qū)服務次數(shù)在區(qū)間[15,20)內(nèi)的人數(shù)為360×0.625=225人.
(3)在樣本中,處于[20,25)內(nèi)的人數(shù)為3,可分別記為A,B,C,處于[25,30)內(nèi)的人數(shù)為2,可分別記為a,b.從該5名同學中取出2人的取法有(A,a),(A,b),(B,a)(B,b),(C,a),(C,b),(A,B),(A,C),(B,C),(a,b)共10種,且他們出現(xiàn)的機會均等;至多一人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的情況有(A,a),(A,b),(B,a),(B,b),(C,a),(C,b),(a,b)共7種,所以至多一人參加社區(qū)服務次數(shù)在區(qū)間[20,25)內(nèi)的概率為$\frac{7}{10}$.

點評 本題考查了頻率分布直方圖及古典概型的概率公式,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.若f(x+π)=f(x),且f(-x)=f(x),則f(x)可以是( 。
A.sin2xB.cosxC.cos|x|D.|sinx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,已知l1⊥l2,圓心在l1上,半徑為1m的圓O在t=0時與l2相切于點A,圓O沿l1以1m/s的速度勻速向上移動,圓被直線l2所截上方圓弧長記為x,令y=$si{n^2}\frac{x}{2}$,則y與時間t(0≤t≤1,單位:s)的函數(shù)y=f(t)的圖象大致為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=x2+2x|x-a|,其中a∈R.
(Ⅰ)當a=-1時,在所給坐標系中作出f(x)的圖象;
(Ⅱ)對任意x∈[1,2],函數(shù)f(x)的圖象恒在函數(shù)g(x)=-x+14圖象的下方,求實數(shù)a的取值范圍;
(Ⅲ)若關(guān)于x的方程f(x)+1=0在區(qū)間(-1,0)內(nèi)有兩個相異根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{x^2}-ax-7,(x≤1)\\ \frac{a}{x}(x>1)\end{array}\right.$是R上的增函數(shù),則a的取值范圍是( 。
A.-4≤a<0B.a≤-2C.-4≤a≤-2D.a<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=-x3+2ax2-a2x(x∈R),其中a∈R
(Ⅰ)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)當a=3時,求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當x<0時,f(x)=x+2,那么不等式2f(x)-1<0的解集是$\left\{{\left.x\right|}\right.\left.{x<-\frac{3}{2}或0≤x<\frac{5}{2}}\right\}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知點P(2,1),Q(-2,-2),過點(0,5)的直線l與線段PQ有公共點,則直線l的斜率k的取值范圍是k≤-2或k≥$\frac{7}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知等比數(shù)列{an}各項均為正數(shù),且a1,$\frac{1}{2}$a3,a2成等差數(shù)列,求$\frac{{a}_{3}+{a}_{4}}{{a}_{4}+{a}_{5}}$的值.

查看答案和解析>>

同步練習冊答案